Acknowledgement
나방의 성페로몬 시스템에 대한 연구에 발을 들여 곤충의 화학생태 분야에 매료될 수 있도록 이끌어주신 고 부경생 교수님께 깊이 감사드립니다.
References
- Allison, J.D., Carde, R.T., 2008. Male pheromone blend preference function measured in choice and no-choice wind tunnel trials with almond moths, Cadra cautella. Anim. Behav. 75, 259-266. https://doi.org/10.1016/j.anbehav.2007.04.033
- Almaas, T.J., Mustaparta, H., 1991. Heliothis virescens: response characteristics of receptor neurons in sensilla trichodea type 1 and type 2. J. Chem. Ecol. 17, 953-972. https://doi.org/10.1007/BF01395602
- Ammagarahalli, B., Gemeno, C., 2014. Response profile of pheromone receptor neurons in male Grapholita molesta (Lepidoptera: Tortricidae). J. Insect Physiol. 71, 128-136. https://doi.org/10.1016/j.jinsphys.2014.10.011
- Anderson, P, Sadek, M.M., Hansson, B.S., 2003. Pre-exposure modulates attraction to sex pheromone in a moth. Chem. Senses. 28, 285-291. https://doi.org/10.1093/chemse/28.4.285
- Anderson, P., Hansson, B.S., Nilsson, U., Han, Q., Sjoholm, M., Skals, N., Anton, S., 2007. Increased behavioral and neuronal sensitivity to sex pheromone after brief odor experience in a moth. Chem. Senses 32, 483-491. https://doi.org/10.1093/chemse/bjm017
- Ando, T., Inomata, S., Yamamoto, M., 2004. Lepidopteran Sex Pheromones. In: Schulz, S. (Ed.), The chemistry of pheromones and other semiochemicals I, topics in current chemistry. Vol. 96. Springer-Verlag, Berlin, Heidelberg.
- Badeke, E., Haverkamp, A., Hansson, B.S., Sachse, S., 2016. A challenge for a male noctuid moth? Discerning the female sex pheromone against the background of plant volatiles. Frontiers Physiol. 7, 143. doi: 10.3389/fphys.2016.00143
- Baker, T.C., 2002. Mechanism for saltational shifts in pheromone communication systems. Proc. Natl Acad. Sci. 99, 13368-13370. https://doi.org/10.1073/pnas.222539799
- Baker, T.C., 2009. Nearest neural neighbors: moth sex pheromone receptors HR11 and HR13. Chem. Senses 34, 465-468. https://doi.org/10.1093/chemse/bjp025
- Baker, T.C., Carde, R.C., 1979. Endogenous and exogenous factors affecting periodicities of female calling and male sex pheromone response in Grapholitha molesta (Busck). J. Insect Physiol. 25, 943-950. https://doi.org/10.1016/0022-1910(79)90107-0
- Baker, T.C., Domingue, M.J., Myrick, A.J., 2012. Working range of stimulus flux transduction determines dendrite size and relative number of pheromone component receptor neurons in moths. Chem. Senses 37, 299-313. https://doi.org/10.1093/chemse/bjr122
- Baker, T.C., Fadamiro, H., 1998. Moth uses fine tuning for odour resolution. Nature 393, 530. https://doi.org/10.1038/31131
- Baker, T.C., Willis, M., Haynes, K.F., Phelan, P.L., 1985. A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol. Entomol. 10, 257-265. https://doi.org/10.1111/j.1365-3032.1985.tb00045.x
- Barrozo, R.B., Jarriault, D., Deisig, N., Gemeno, C., Monsempes, C., Lucas, P., Gadenne, C., Anton, S., 2011. Mating-induced differential coding of plant odour and sex pheromone in a male moth. Eur. J. Neurosci. 33, 1841-1850. https://doi.org/10.1111/j.1460-9568.2011.07678.x
- Bartell, R.J., Roelofs, W.L., 1973. Inhibition of sexual response in males of the moth Argyroteania velutinana by brief exposures to synthetic pheromone or its geometrical isomer. J. Insect Physiol. 19, 655-661. https://doi.org/10.1016/0022-1910(73)90074-7
- Berg, B.G., Almaas, T.J., Bjaalie, J.G., Mustaparta, H., 1998. The macroglomerular complex of the antennal lobe in the tobacco budworm Heliothis virescens: specified subdivision in four compartments according to information about biologically significant compounds. J. Comp. Physiol. A. 183, 669-682. https://doi.org/10.1007/s003590050290
- Borrero-Echeverry, F., Bengtsson, M., Nakamuta, K., Witzgall, P., 2018. Plant odor and sex pheromone are integral elements of specific mate recognition in an insect herbivore. Evolution 72, 2225-2233. https://doi.org/10.1111/evo.13571
- Brill, F.M., Rosenbaum, T., Reus, I., Kleineidam, J.C., Nawrot, P.M., Rossler, W., 2013. Parallel processing via a dual olfactory pathway in the honeybee. J. Neurosci. 33, 2443-2456. https://doi.org/10.1523/JNEUROSCI.4268-12.2013
- Butenandt, A., Beckmann, R., Stamm, D., Hecker, E., 1959. Uber den Sexuallockstoff des Seidenspinners, Bombyx mori: Reindarstellung und Konstitution. Z. Naturforsch 14, 283-284.
- Castrovillo, P.J. , Carde, R.T., 1979. Environmental regulation of female calling and male pheromone response periodicities in the codling moth (Laspeyresia pomonella). J. Insect Physiol. 25, 659-667. https://doi.org/10.1016/0022-1910(79)90116-1
- Chang, H., Liu, Y., Ai, D., Jiang, X., Dong, S., Wang, G., 2017. A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera. Curr. Biol. 27, 1610-1615. https://doi.org/10.1016/j.cub.2017.04.035
- Chemnitz, J., Jentschke, P.C., Ayasse, M., Steiger, S., 2015. Beyond species recognition: somatic state affects long-distance sex pheromone communication. Proc. Biol. Sci. 282, 20150832.
- Choi, M.Y., Fuerst, E.J., Rafaeli, A., Jurenka, R., 2003. Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc. Natl Acad. Sci. 100, 9721-9726. https://doi.org/10.1073/pnas.1632485100
- Christensen, T., Hildebrand, G.J., 1987. Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta. J. Comp. Physiol. A. 160, 553-569. https://doi.org/10.1007/BF00611929
- Cotton, S., Fowler, K., Pomiankowski, A., 2004. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. Biol. Sci. 271, 771-783. https://doi.org/10.1098/rspb.2004.2688
- De Bruyne, M., Baker, T.C., 2008. Odor detection in insects: volatile codes. J. Chem. Ecol. 34, 882-897. https://doi.org/10.1007/s10886-008-9485-4
- Deng, J-Y., Wei, H., Huang, Y-P., Du, J-W., 2004. Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. J. Chem. Ecol. 30, 2037-2045. https://doi.org/10.1023/B:JOEC.0000045593.62422.73
- Dickens, J.C., Smith, J.W., Light, D.M., 1993. Green leaf volatiles enhance sex attractant pheromone of the tobacco budworm, Heliothis virescens (Lep.: Noctuidae). Chemoecol. 4, 175-177. https://doi.org/10.1007/BF01256553
- Domingue, M.J., Musto, C.J., Linn, Jr. C.E., Roelofs, W.L., Baker, T.C., 2007. Altered olfactory receptor neuron responsiveness in rare Ostrinia nubilalis males attracted to the O. furnacalis pheromone blend. J. Insect Physiol. 53, 1063-1071. https://doi.org/10.1016/j.jinsphys.2007.05.013
- Durand, N., Carot-Sans, G., Bozzolan, F., Rosell, G., Siaussat, D., Debernard, S., Chertemps, T., Maibeche-Coisne, M., 2011. Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis. PLoS ONE 6, e29147. doi: 10.1371/journal.pone.0029147
- Fabre, J.H., 1913. The great peacock moth. in: Teale, E.W. (Ed.), The insect world of J. Henri Fabre. 1964. Dodd, Mead & Co., New York.
- Figueredo, A.J., Baker, T.C., 1992. Reduction of the response to sex pheromone in the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) following successive pheromonal exposures. J. Insect Behav. 5, 347-363. https://doi.org/10.1007/BF01049843
- Goldman, A.L., van Naters, W.V., Lessing, D., Warr, C.G., Carlson, J.R., 2005. Coexpression of two functional odor receptors in one neuron. Neuron 45, 661-666. https://doi.org/10.1016/j.neuron.2005.01.025
- Gomez, V.R.C., Nieto, G., Valdes, J., Castrejon, F., Rojas, J.C., 2003. The antennal sensilla of Zamagiria dixolophella Dyar (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 96, 672-678. https://doi.org/10.1603/0013-8746(2003)096[0672:TASOZD]2.0.CO;2
- Gonzalez-Karlsson, A., Golov, Y., Steinitz, H., Moncaz, A., Halon, E., Horowitz, R., Goldenberg, I., Gurka, R., Liberzon, A., Soroker, V., Jurenka, R., Harari, A.R., 2021. Males perceive honest information from female released sex pheromone in a moth. Behavior. Ecol. 32, 1127-1137. https://doi.org/10.1093/beheco/arab073
- Hansson, B.S., Blackwell, A., Hallberg, E., Lofqvist, J., 1995. Physiological and morphological characteristics of the sex pheromone detecting system in male corn stemborers, Chilo partellus (Lepidoptera: Pyralidae). J. Insect Physiol. 41, 171-178. https://doi.org/10.1016/0022-1910(94)00086-V
- Hansson, B.S., Hallberg, E., Lofstedt, C., Steinbrecht, R.A., 1994. Correlation between dendrite diameter and action potential amplitude in sex pheromone specific receptor neurons in male Ostrinia nubilalis. Tissue and Cell, 26, 503-512. https://doi.org/10.1016/0040-8166(94)90003-5
- Hansson, B.S., Sylvia, A., 2000. Function and morphology of the antennal lobe: New developments. Annu. Rev. Entomol. 45, 203-231. https://doi.org/10.1146/annurev.ento.45.1.203
- Harari, A.R., Zahavi, T., Thiery, D., 2011. Fitness cost of pheromone production in signaling female moths. Evolution 65, 1572-1582. https://doi.org/10.1111/j.1558-5646.2011.01252.x
- Ishida, Y., Leal, W.S., 2005. Rapid inactivation of a moth pheromone. Proc. Natl Acad. Sci. 102, 14075-14079. https://doi.org/10.1073/pnas.0505340102
- Jacob, V., Monsempes, C., Rospars, J.P., Masson, J.B., Lucas, P., 2017. Olfactory coding in the turbulent realm. PLoS Comput Biol. 13, e1005870. https://doi.org/10.1371/journal.pcbi.1005870
- Jing, L., Zhaoqun, L., Zongxiu, L., Xiaoming, C., Lei, B., Zhaojun, X., Chen, Z., 2019. Comparison of male antennal morphology and sensilla physiology for sex pheromone olfactory sensing between sibling moth species: Ectropis grisescens and Ectropis obliqua (Geometridae). Arch. Insect Biochem. Physiol. 101, e21545. doi: 10.1002/1rch.21545
- Judd, G.J.R., Gardiner, M.G.T., DeLury. N.C., Karg, G., 2005. Reduced antennal sensitivity, behavioural response, and attraction of male codling moths, Cydia pomonella, to their pheromone (E,E)-8,10-dodecandien-1-ol following various pre-exposure regimes. Entomol. Exp. Appl. 114, 63-78.
- Jung, C.R., Jung, J.K., Kim, Y., 2013. Effects of different sex pheromone compositions and host plants on the mating behavior of two Grapholita species. J. Asia-Pacific Entomol. 16, 507-512. https://doi.org/10.1016/j.aspen.2013.08.004
- Jurenka, R., 2017. Regulation of pheromone biosynthesis in moths. Curr. Opinion Insect Sci. 24, 29-35. https://doi.org/10.1016/j.cois.2017.09.002
- Justus, K.A., Carde, R.T., French, A.S., 2005. Dynamic properties of antennal responses to pheromone in two moth species. J. Neurophysiol. 93, 2233-2239. https://doi.org/10.1152/jn.00888.2004
- Kaissling, K.E., 1996. Peripheral mechanisms of pheromone reception in moths. Chem. Senses 21, 257-268. https://doi.org/10.1093/chemse/21.2.257
- Kaissling, K.-E., Priesner, E., 1970. Smell threshold of the silkmoth. Naturwissenschaften 57, 23-28. https://doi.org/10.1007/BF00593550
- Kanno, H., 1981 . Mating behaviour of the rice stem borer moth, Chilo suppressalis Walker (Lepidoptera: Pyralidae). V. Cdtical illumination intensity for female calling and male sexual response under various temperatures. Appl. Entomol. Zool. 16, 179-185. https://doi.org/10.1303/aez.16.179
- Karlson, P., Luscher, M., 1959. Pheromones: a new term for a class of biologically active substances. Nature 183, 55-66. https://doi.org/10.1038/183055a0
- Karpati, Z., Tasin, M., Carde, R.T., Dekker, T., 2013. Early quality assessment lessens pheromone specificity in a moth. Proc. Natl. Acad. Sci. 110, 7377-7382. https://doi.org/10.1073/pnas.1216145110
- Keil, T., 1989. Fine structure of the pheromone-sensitive sensilla on the antenna of the hawkmoth, Manduca sexta. Tissue Cell 21, 139-151. https://doi.org/10.1016/0040-8166(89)90028-1
- Kennedy, J.S., Ludlov, A.R., Sanders, D.J., 1981. Guidance of flying male moths by wind-born sex pheromone. Physiol. Entomol. 6, 395-412. https://doi.org/10.1111/j.1365-3032.1981.tb00655.x
- Koehl, M.A.R., 2006. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem. Senses 31, 93-105. https://doi.org/10.1093/chemse/bjj009
- Koutroumpa, F.A., Karpati, Z., Monsempes, C., Hill, S.R., Hansson, B.S., Jacquin-Joly, E., Krieger, J., Dekker, T., 2014. Shifts in sensory neuron identity parallel differences in pheromone preference in the European corn borer. Front. Ecol. Evol. 2, 00065. doi: 10.3339/fevo.2014.00065
- Kozlov, M.V., Zhu, J., Philipp, P., Francke, W., Zvereva, E.L., Hansson, B.S., Lofstedt, C., 1996. Pheromone specificity in Eriocrania semipurpurella (Stephens) and E. sangii (Wood) (Lepidoptera: Eriocraniidae) based on chirality of semiochemicals. J. Chem. Ecol. 22, 431-454. https://doi.org/10.1007/BF02033647
- Krieger, J., Gondesen, I., Forstner, M., Gohl, T., Dewer, Y., Breer, H., 2009. HR11 and HR13 receptor-expressing neurons are housed together in pheromone-responsive sensilla trichodea of male Heliothis virescens. Chem. Senses 34, 469-477. https://doi.org/10.1093/chemse/bjp012
- Kuebler, S.L., Schubert, M., Karpati, Z., Hansson, B.S., Olsson, S.B., 2012. Antennal lobe processing correlates to moth olfactory behavior. J. Neurosci. 32, 5772-5782. https://doi.org/10.1523/JNEUROSCI.6225-11.2012
- Kumar, G.L., Keil, T.A., 1996. Pheromone stimulation induces cytoskeletal changes in olfactory dendrites of male silkmoths (Lepidoptera, Saturniidae, Bombycidae). Naturwissenschaften 83, 476-478. https://doi.org/10.1007/BF01144018
- Larsson, M.C., Hallberg, E., Kozlov, M.V., Franke, W., Hansson, B.S., Lofstedt, C., 2002. Specialized olfactory receptor neurons mediating intra- and interspecific chemical communication in leafminer moths Eriocrania spp. (Lepidoptera: Eriocraniidae). J. Exp. Biol. 205, 989-998. https://doi.org/10.1242/jeb.205.7.989
- Larsson, M.C., Hansson, B.S., 1998. Receptor neuron responses to potential sex pheromone components in the caddisfly Rhyacophila nubile (Trichoptera: Rhyacophilidae). J. Insect Physiol. 44, 189-196. https://doi.org/10.1016/S0022-1910(97)00043-7
- Lebreton, S., Borrero-Echeverry, F., Gonzalez, F., Solum, M., Wallin, E.A., Hedenstrom, E., Hansson, B.S., Gustavsson, A.L., Bengtsson, M., Birgersson, G., Walker III, W.B., Dweck, H.K.M., Becher, P.G., Witzgall, P., 2017. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biology 15, 88. doi: 10.1186/s12915-017-0427-x
- Lee, J.K., Strausfeld, N.J., 1990. Structure, distribution, and number of surface sensilla and their receptor cells on the antennal flagellum of the male sphinx moth Manduca sexta. J. Neurocytol. 19, 519-538. https://doi.org/10.1007/BF01257241
- Lee, S.G., 2006. Pheromone-related olfactory neuronal pathways of male heliothine moths. PhD thesis. The Pennsylvania State University. pp. 120-166.
- Lee, S.G., Vickers, N.J., Baker, T.C., 2006. Glomerular targets of Heliothis subflexa male olfactory receptor neurons housed within long trichoid sensilla. Chem. Senses. 9, 821-834.
- Levakova, M., Kostal, L., Monsempes, C., Jacob, V., Lucas, P., 2018. Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations. PLoS Comput. Biol. 14, e1006586 https://doi.org/10.1371/journal.pcbi.1006586
- Light, D.M., Flath, R.A., Buttery, R.G., Zalom, F.G., Rice, R.E., Dickens, J.C., Jang, E.B., 1993. Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera). Chemoecol. 4, 145-152. https://doi.org/10.1007/BF01256549
- Liu, C., Liu, Y., Walker, W.B., Dong, S., Wang, G., 2013. Identification and functional characterization of sex pheromone receptors in beet armyworm Spodoptera exigua (Hubner). Insect Biochem. Mol. Biol. 43, 747-754. https://doi.org/10.1016/j.ibmb.2013.05.009
- Lofstedt, C., Butlin, R.K., Guilford, T., Krebs, J.R., 1993. Moth pheromone genetics and evolution. Philos Trans. R. Soc. Lond. B Biol. Sci. 340, 167-177. https://doi.org/10.1098/rstb.1993.0055
- Lofstedt, C., Wahlberg, N., Millar, J.M., 2016. Evolutionary patterns of pheromone diversity in Lepidoptera, in: Allison, J.D., Carde, R.T. (Eds.), Pheromone communication in moths: evolution, behavior and application. University of California Press, Oakland, pp. 43-78.
- Mafra-Neto, A., Carde, R.T., 1994. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142-144. https://doi.org/10.1038/369142a0
- Maitani, M.M., Allara, D.L., Park, K.C., Lee, S.G., Baker, T.C., 2010. Moth olfactory trichoid sensilla exhibit nanoscale-level heterogeneity in surface lipid properties. Arthropod Struct. Develop. 39, 1-16. https://doi.org/10.1016/j.asd.2009.08.004
- Masse, N.Y., Turner, C.G., Jefferis, S.X.E.G., 2009. Olfactory information processing in Drosophila. Curr. Biol. 19, 700-713. https://doi.org/10.1016/j.cub.2009.02.065
- McNeil, J.N., 1991. Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annu. Rev. Entomol. 36, 407-430. https://doi.org/10.1146/annurev.en.36.010191.002203
- Meng, L.Z., Wu, C.H., Wicklein, M., Kaissling, K.E., Bestmann, H.J., 1989. Number and sensitivity of three types of pheromone receptor-cells in Antheraea pernyi and Antheraea polyphemus. J. Comp. Physiol. A. 165, 139-146. https://doi.org/10.1007/BF00619188
- Millar, J.G., 2000. Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractant pheromones. Annu. Rev. Entomol. 45, 575-604. https://doi.org/10.1146/annurev.ento.45.1.575
- Murlis, J., Jones, C.D., 1981. Fine-scale structure of odour plumes in relation to distant pheromone and other attractant sources. Physiol. Entomol. 6, 71-86. https://doi.org/10.1111/j.1365-3032.1981.tb00262.x
- Murlis, J., Willis, M.A., Carde, R.T., 2000. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25, 211-222. https://doi.org/10.1046/j.1365-3032.2000.00176.x
- Murlis, J.S., Elkinton, J.S., Carde, R.T., 1992. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505-532. https://doi.org/10.1146/annurev.en.37.010192.002445
- Murmu, M.S., Hanoune, J., Choi, A., Bureau, V., Renou, M., Dacher, M., Deisig, N., 2020. Modulatory effects of pheromone on olfactory learning and memory in moths. J. Insect Physiol. 127, 104159. https://doi.org/10.1016/j.jinsphys.2020.104159
- Naka, H., Fujii, T., 2020. Chemical divergences in the sex pheromone communication systems in moths, in: Ishikawa, Y. (Ed.), Insect sex pheromone research and beyond, Springer, Singapore, pp. 3-18.
- Nakagawa, T., Sakurai, T., Nishioka, T., Touhara, K., 2005. Insect sex pheromone signals mediated by specific combinations of olfactory receptors. Science 307, 1638-1642. https://doi.org/10.1126/science.1106267
- Nieberding, C.M., Fischer, K., Saastamoinen, M., Allen, C.E., Wallin, E.A., Hedenstrom, E., Brakefield, P.M., 2012. Cracking the olfactory code of a butterfly: the scent of ageing. Ecol. Lett. 15, 415-424. https://doi.org/10.1111/j.1461-0248.2012.01748.x
- Party, V., Hanot, C., Busser, D.S., Rochat, D., Renou, M., 2013. Changes in odor background affect the locomotory response to pheromone in moths. PLoS ONE 8, e52897. https://doi.org/10.1371/journal.pone.0052897
- Party, V., Hanot, C., Said, I., Rochat, D., Renou, M., 2009. Plant terpenes affect intensity and temporal parameters of pheromone detection in a moth. Chem. Senses 34, 763-774. https://doi.org/10.1093/chemse/bjp060
- Pasqual, C.D., Groot, A.T., Mappes, J., Burdfield-Steel, E., 2021. Evolutionary importance of intraspecific variation in sex pheromones. Trends Ecol. Evol. 36, 848-859. https://doi.org/10.1016/j.tree.2021.05.005
- Plettner, E., Lazar, J., Prestwich, E.G., Prestwich, G.D., 2000. Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth Lymantria dispar. Biochemistry 39, 8953-8962. https://doi.org/10.1021/bi000461x
- Pregitzer, P., Schubert, M., Breer, H., Hansson, B.S., Sachse, S., Krieger, J., 2012. Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens. Front. Cell. Neurosci. 6, 42. https://doi.org/10.3389/fncel.2012.00042
- Reddy, G.V.P., Guerrero, A., 2000. Behavioral responses of the diamondback moth, Plutella xylostella, to green leaf volatiles of Brassica oleracea subsp capitata. J. Agric. Food Chem. 48, 6025-6029. https://doi.org/10.1021/jf0008689
- Renou, M., Gadenne, C., Tauban, D., 1996. Electrophysiological investigations of pheromone-sensitive sensilla in the hybrids between two moth species. J. Insect Physiol. 42, 267-277. https://doi.org/10.1016/0022-1910(95)00108-5
- Rospars, J.P., Lansky, P., Krivan, V., 2003. Extracellular transduction events under pulsed stimulation in moth olfactory sensilla. Chem. Senses 28, 509-522. https://doi.org/10.1093/chemse/28.6.509
- Rouyar, A., Deisig, N., Dupuy, F., Limousin, D., Wycke, M.A., Renou, M., Anton, S., 2015. Unexpected plant odor responses in a moth pheromone system. Front. Physiol. 6, 148. doi: 10.3389/fphys.2015.00148
- Ruther, J., Matschke, M., Garbe, L.A., Steiner, S., 2009. Quantity matters: male sex pheromone signals mate quality in the parasitic wasp Nasonia vitripennis. Proc. Biol. Sci. 276, 3303-3310.
- Schmidt-Busser, D., Von Arx, M., Guerin, P.M., 2009. Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone. J. Comp. Physiol. A. 195, 853-864. https://doi.org/10.1007/s00359-009-0464-1
- Shorey, H.H. , Gaston, L.K., 1964. Sex pheromone of noctuid moths. III. Inhibition of male responses to the sex pheromone of Trichoplusia ni (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 57, 775-779. https://doi.org/10.1093/aesa/57.6.775
- Steinbrecht, R.A., 1997. Pore structures in insect olfactory sensilla: a review of data and concepts. Int. J. Insect Morphol. Embryol. 26, 229-245. https://doi.org/10.1016/S0020-7322(97)00024-X
- Stelinski, L.L., Miller, J.R., Gut, L.J., 2003. Presence of long-lasting peripheral adaptation in oblique-banded leafroller, Choristoneura rosaceana and absence of such adaptation in redbanded leafroller, Agryrotaenia velutiana. J. Chem. Ecol. 29, 405-423. https://doi.org/10.1023/A:1022638113121
- Stengl, M., 2010. Pheromone transduction in moths. Front. Cellular Neurosci. 4. doi: 10.3389/fncel.2010.00133
- Sun, L., Wang, Q., Zhang, Y., Tu, X., Yan, Y., Wang, Q., Dong, K., Zhang, Y., Xiao, Q., 2019. The sensilla trichodea-biased EoblPBP1 binds sex pheromones and green leaf volatiles in Ectropis obliqua Prout, a geometrid moth pest that uses Type-II sex pheromones. J. Insect Physiol. 116, 17-24. https://doi.org/10.1016/j.jinsphys.2019.04.005
- Todd, J.L., Baker, T.C., 1999. Function of peripheral olfactory organs, in: Hansson, B.S. (Ed.), Insect olfaction, Springer, New York, pp. 67-96.
- Tomescu, N., Stan, G., Chis, V., leleriu, S., Pastinaru, C., 1981. Influence of light and age on the response of males of Mamestra brassicae L. (Lepidoptera: Noctuidae) to sexual pheromone. Stud. Univ. Babes 26, 43-47.
- Tripathy, S., Peters, O.J., Staudacher, E.M., Kalwar, F.R., Hatfield, M.N., Daly, K.C., 2010. Odors pulsed at wing beat frequencies are tracked by primary olfactory networks and enhance odor detection. Front. Cell. Neurosci. 4, 1-14. doi: 10.3389/neuro.03.001.2010.
- Turgeon, J.J, McNeil, J.N., Roelofs, W.L., 1983. Responsiveness of Pseudaletia unipuncta males to the female sex pheromone. Physiol. Entomol. 8, 339-344. https://doi.org/10.1111/j.1365-3032.1983.tb00366.x
- Vickers, N.J., Baker, T.C., 1992, Male Heliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex pheromone (Lepidoptera, Noctuidae). J. Insect Behav. 5, 699-687. https://doi.org/10.1007/BF01047981
- Vickers, N.J., Christensen, T.A., Baker, T.C., Hildebrand, J.G., 2001. Odour-plume dynamics influence the brain's olfactory code. Nature 410, 466-470. https://doi.org/10.1038/35068559
- Vogt, R.G., Riddiford, L.M., 1981. Pheromone binding and inactivation by moth antennae. Nature 293, 161-163. https://doi.org/10.1038/293161a0
- Vogt, R.G., Riddiford, L.M., Prestwich, G.D., 1985. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc. Natl Acad. Sci. 82, 8827-8831. https://doi.org/10.1073/pnas.82.24.8827
- Wang, C., Wang, B., Wang, G., 2021. Functional characterization of sex pheromone neurons and receptors in the armyworm, Mythimna separata (Walker). Front. Neuroanat. 15, 673420. doi:10.3389/fnana.2021.673420
- Wanner, K.W., Nichols, A.S., Allen, J.E., Bunger, P.L., Garczynski, S.F., Linn, C.E., 2010. Sex pheromone receptor specificity in the European corn borer moth, Ostrinia nubilalis. PLoS ONE 5, e8685.doi: 10.1371/journal.pone.0008685
- Willis, M.A., Ford, E.A., Avondet, J.L., 2013. Odor tracking flight of male Manduca sexta moths along plumes of different crosssectional area. J. Comp. Physiol. A. 199, 1015-1036. https://doi.org/10.1007/s00359-013-0856-0
- Wu, H., Hou, C., Huang, L.Q., Yan, F.S., Wang, C.Z., 2013. Peripheral coding of sex pheromone blends with reverse ratios in two Helicoverpa Species. PLoS ONE 7, e70078.
- Yang, Z.H., Bengtsson, M., Witzgall, P., 2004. Host plant volatiles synergize response to sex pheromone in codling moth, Cydia pomonella. J. Chem. Ecol. 30, 619-629. https://doi.org/10.1023/B:JOEC.0000018633.94002.af
- Yuvaraj, J.K., Andersson, M.N., Anderbrant, O., Lofstedt, C., 2018. Diversity of olfactory structures: a comparative study of antennal sensilla in Trichoptera and Lepidoptera. Micron. 111, 9-18. https://doi.org/10.1016/j.micron.2018.05.006
- Zhang, D.D., Lofstedt, C., 2015. Moth pheromone receptors: gene sequences, function, and evolution. Front. Ecol. Evol. 3, 105. doi:10.3389/fevo.2015.00105
- Zhang, X.Q., Mang, D.Z., Liao, H., Ye, J., Qian, J.L., Dong, S.L., Zhang, Y.N., He, P., Zhang, Q.H., Purba, E.R., Zhang, L.W., 2021. Functional disparity of three pheromone-binding proteins to different sex pheromone components in Hyphantria cunea (Drury). J. Agric. Food Chem. 69, 55-66. https://doi.org/10.1021/acs.jafc.0c04476
- Zhu, J.W., Kozlov, M.V., Philipp, P., Francke, W., Lofstedt, C., 1995. Identification of a novel moth sex pheromone in Eriocrania cicatricella (Zett.) (Lepidoptera: Eriocraniidae) and its phylogenetic implications. J. Chem. Ecol. 21, 29-43. https://doi.org/10.1007/BF02033660
- Zweerus, N.L., van Wijk, M., Schal, C., Groot, A.T., 2021. Experimental evidence for female mate choice in a noctuid moth. Animal Behav. 179, 1-13. https://doi.org/10.1016/j.anbehav.2021.06.022