DOI QR코드

DOI QR Code

Study on the Effect of Emissivity for Estimation of the Surface Temperature from Drone-based Thermal Images

드론 열화상 화소값의 타겟 온도변환을 위한 방사율 영향 분석

  • Jo, Hyeon Jeong (Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University) ;
  • Lee, Jae Wang (Dept. of Civil Engineering, Korea Maritime and Ocean University) ;
  • Jung, Na Young (Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University) ;
  • Oh, Jae Hong (Dept. of Civil Engineering, Korea Maritime and Ocean University)
  • Received : 2022.01.23
  • Accepted : 2022.02.24
  • Published : 2022.02.28

Abstract

Recently interests on the application of thermal cameras have increased with the advance of image analysis technology. Aside from a simple image acquisition, applications such as digital twin and thermal image management systems have gained popularity. To this end, we studied the effect of emissivity on the DN (Digital Number) value in the process of derivation of a relational expression for converting DN to an actual surface temperature. The DN value is a number representing the spectral band value of the thermal image, and is an important element constituting the thermal image data. However, the DN value is not a temperature value indicating the actual surface temperature, but a brightness value indicating high and low heat as brightness, and has a non-linear relationship with the actual surface temperature. The reliable relationship between DN and the actual surface temperature is critical for a thermal image processing. We tested the relationship between the actual surface temperature and the DN value of the thermal image, and then the radiation adjustment was performed to better estimate actual surface temperatures. As a result, the relation graph between the actual surface temperature and the DN value similarly show linear pattern with the relation graph between the radiation-controlled non-contact thermometer and the DN value. And the non-contact temperature after adjusting the emissivity was closer to the actual surface temperature than before adjusting the emissivity.

최근 열화상 카메라의 수요 증가와 함께 열화상 카메라를 활용한 연구 또한 관심이 높아지고 있다. 그 중, 기존의 드론에 열화상 카메라를 부착하여 촬영하는 등의 단순 촬영에서 나아가 열 영상 처리를 통한 디지털 트윈 구축, 영상화된 데이터를 통한 관리 시스템 구축 등 열 영상 처리 후 데이터를 응용한 연구가 증가하고 있다. 본 논문에서는 열화상 카메라를 처리하는 과정에서 생성되는 화소값인 DN값(Digital Number)이 실제 표면 온도로 변환하기 위한 관계식 유도과정에서 방사율이 DN값에 미치는 영향을 알아보기 위한 연구를 진행하였다. DN값은 열 영상의 스펙트럼 밴드 값을 나타내는 숫자로 열 영상 데이터를 구성하는 중요한 요소이다. 하지만 DN값은 실제 표면 온도를 표시하는 온도 값이 아닌 열이 높고 낮음을 밝기로 표시한 밝기 값으로 실제 표면 온도와 비 선형적인 관계이다. 그러므로 열화상 카메라로 획득한 영상 이미지의 DN값을 실제 표면 온도와 관계성을 보일 수 있다면 데이터를 처리하기 수월하며, 더 많은 활용성을 기대할 수 있다. 그러므로 본 연구에서는 우선, 실제 표면 온도와 열 영상의 DN값의 관계를 분석하고, 열화상 카메라와 같은 원리로 작용하는 비접촉 열화상 온도계가 실제 표면 온도에 근접한 참값으로 변환할 수 있도록 방사 조정을 진행하였다. 그 결과 실제 표면 온도 및 DN값의 관계 그래프와 방사 조정된 비접촉 열화상 온도계 및 DN값의 관계 그래프가 유사한 선형관계를 보였으며 방사율을 조정하기 전보다 조정한 후의 비접촉 온도가 실제 표면 온도에 더 근접한 결과를 얻었다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 지원으로 수행되었습니다 (NRF-2019R1I1A3A01062109).

References

  1. Bae, J., Lee, J., Jang, A., and Ju, Y.K. (2019). SMART SKY EYE system for structural safety assessment using drones and thermal images. Journal of The Korean Association for Spatial Structures, Vol. 19, No. 3, pp. 4-8. https://doi.org/10.9712/KASS.2019.19.3.4
  2. FLIR. (2014). Advanced Radiometry Application Note; FLIR: Wilsonville, OR, USA.
  3. FLIR. (2016). For R&D Professionals Infrared Thermal Imaging Handbook. FLIR.
  4. FLIR. (2013). User Guide(Flir Ex series). FLIR
  5. Ham, G.W., Lee, J.M., Bae, K.H., and Park, H.G. (2019). A study on agricultural drought monitoring using drone thermal and hyperspectral sensor. Journal of the Korean Association of Geographic Information Studies, Vol. 22, No. 3, 107-119. (in Korean with English abstract) https://doi.org/10.11108/KAGIS.2019.22.3.107
  6. Hwang, S.K. (2020). Development of UAV-aided Laser Thermography System for Visualizing Invisible Coating Defects in Steel Structures, PhD Dissertation, KAIST, Daejoen, Korea, 100p.
  7. Jung, J.Y., Yoon, H.J., Cho, H.W., and Yang, H.S. (2018). A study on temperature characteristics of various depth using infrared thermography. Journal of the Korea Academia-Industrial cooperation Society, Vol. 19, No. 3, pp. 83-89.
  8. Kelly, J., Kljun, N., Olsson, P.O., Mihai, L., Liljeblad, B., Weslien, P., and Eklundh, L. (2019). Challenges and best practices for deriving temperature data from an uncalibrated UAV thermal infrared camera. Remote Sensing, Vol. 11, No. 5, pp. 567. https://doi.org/10.3390/rs11050567
  9. Kuenzer, C. and Dech, S. (2013). Theoretical background of thermal infrared remote sensing. In Thermal Infrared Remote Sensing, pp. 1-26. Springer, Dordrecht.
  10. Lee, E.J., Shin, S.Y., Ko, B.C., and Chang, C. (2016). Early sinkhole detection using a drone-based thermal camera and image processing. Infrared Physics & Technology, Vol. 78, pp. 223-232. (in Korean with English abstract) https://doi.org/10.1016/j.infrared.2016.08.009
  11. Lee, J.G., Ryu, Y.C., Kim, Y.H., Choi, W., and Kim, H.J. (2018). Drone infrared thermography method for leakage inspection of reservoir embankment. Journal of the Korean Society of Agricultural Engineers, Vol. 60, No. 6, pp. 21-31. (in Korean with English abstract) https://doi.org/10.5389/KSAE.2018.60.6.021
  12. Muntwyler, U., Schuepbach, E., and Lanz, M. (2015). Infrared (IR) drone for quick and cheap PV inspection. In Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition. pp. 1804-1806.
  13. Zheng, H., Zhong, X., Yan, J., Zhao, L., and Wang, X. (2020). A thermal performance detection method for building envelope based on 3D model generated by UAV thermal imagery. Energies, Vol. 13, No. 24, pp. 6677. https://doi.org/10.3390/en13246677