DOI QR코드

DOI QR Code

다양한 감광제와 아미노산의 조합 반응에서 nitro blue tetrazolium의 환원특성 평가

Reduction of nitro blue tetrazolium by combined reaction of various photosensitizers with amino acids

  • 이은빈 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 홍정일 (서울여자대학교 자연과학대학 식품응용시스템학부)
  • Lee, Eunbin (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Hong, Jungil (Division of Applied Food System, College of Natural Science, Seoul Women's University)
  • 투고 : 2021.11.09
  • 심사 : 2021.12.22
  • 발행 : 2022.02.28

초록

본 연구에서는 형광등 빛 조사 하에 각종 감광제와 아미노산의 조합에 의한 NBT의 환원 특성을 조사하였다. 기존 SOD 활성 측정에 이용된 Rb-Met 반응계는 증류수나 Tris보다는 PBS 용매 상에서 가장 우수한 효과를 나타냈다. 빛 조사 하에 Rb에 의한 NBT 환원을 위해서는 Met과 His 등의 아미노산이 필요하며, 감광제로서는 isoalloxazine 계열의 Rb와 thiazine 계열의 MB가 효과적인 환원 반응을 유도했다. 하지만 각종 감광제나 아미노산의 조합, 그리고 반응 용매에 따라 NBT 환원정도가 상이하며, 특히 Rb-Met in PBS와 MB-His in Tris 반응계가 가장 큰 반응을 유도하였다. Rb에 의해 유도된 NBT 환원반응은 SOD 및 gallic acid에 의해 효과적으로 저해되었으나, Tris 상에서 MB-His에 의한 NBT 환원은 SOD 및 gallic acid에 의한 저해효과가 미미하여 Rb와는 다른 기작에 의해 NBT 환원이 유도되는 것으로 보인다. 본 결과는 감광제와 아미노산에 따라 빛 조사 하에 다양한 상호작용이 발생하며, NBT 환원을 유도하는데 superoxide anion 뿐만 아니라 다른 요인도 관여할 수 있음을 시사한다.

Riboflavin (Rb), in the presence of methionine (Met) under light, generates superoxide radicals that can reduce nitro blue tetrazolium (NBT) to its corresponding formazan. The Rb-Met/NBT system has been used to measure the superoxide dismutase (SOD)-like activities of various antioxidants. However, the reaction mechanisms have not been clearly defined, and the assay conditions are not consistent. In this study, the effects of different photosensitizers and amino acids on NBT reduction in different solvents were investigated. NBT reduction in the Rb-Met/NBT system was more pronounced in phosphate-buffered saline, compared to distilled water or Tris (pH 7.5); histidine (His) instead of Met also led to considerable Rb-induced NBT reduction. Among the photosensitizers, methylene blue with His caused potent NBT reduction in Tris. Rb-induced NBT reduction combined with Met or His was quantitatively inhibited by SOD or gallic acid, but did not affect MB-induced reduction sensitively.

키워드

과제정보

본 연구는 과학기술정보통신부의 재원의 한국연구재단 중견 및 일반연구자 지원사업(NRF-2019R1A2C1089617와 NRF-2021R1F1A1051466)에 의해 수행되었음.

참고문헌

  1. Abe H, Ikebuchi K, Wagner SJ, Kuwabara M, Kamo N, Sekiguchi S. Potential involvement of both type I and type II mechanisms in M13 virus inactivation by methylene blue photosensitization. Photochem. Photobiol. 66: 204-208 (1997) https://doi.org/10.1111/j.1751-1097.1997.tb08644.x
  2. Benitez FJ, Real FJ, Acero JL, Leal AI, Garcia C. Gallic acid degradation in aqueous solutions by UV/H2O2 treatment, Fenton's reagent, and the photo-Fenton system. J. Hazard. Mater. 126: 31-39 (2005) https://doi.org/10.1016/j.jhazmat.2005.04.040
  3. Bournonville CFG, Diaz-Ricci JC. Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochem. Analysis 22: 268-271 (2011) https://doi.org/10.1002/pca.1275
  4. Cardoso DR, Libardi SH, Skibsted LH. Riboflavin as a photosensitizer. Effects on human health and food quality. Food Funct. 3: 487-502 (2012) https://doi.org/10.1039/c2fo10246c
  5. Chatti IB, Boubaker J, Skandrani I, Bhouri W, Ghedira K, Chekir Ghedira L. Antioxidant and antigenotoxic activities in Acacia salicina extracts and its protective role against DNA strand scission induced by hydroxyl radical. Food Chem. Toxicol. 49: 1753-1758 (2011) https://doi.org/10.1016/j.fct.2011.04.022
  6. Cheng CW, Chen LY, Chou CW, Liang JY. Investigations of riboflavin photolysis via coloured light in the nitro blue tetrazolium assay for superoxide dismutase activity. J. Photoch. Photobio. B. 148: 262-267 (2015) https://doi.org/10.1016/j.jphotobiol.2015.04.028
  7. Choi HS, Kim JW, Cha YN, Kim CK. A Quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J. Immunoass. Immunoch. 27: 31-44 (2006) https://doi.org/10.1080/15321810500403722
  8. Culler-Juarez ME, Onthank KL. Elevated immune response in Octopus rubescens under ocean acidification and warming conditions. Mar. Biol. 168: 1-10 (2021) https://doi.org/10.1007/s00227-020-03798-4
  9. Dong H, Sans C, Li W, Qiang Z. Promoted discoloration of methyl orange in H2O2/Fe (III) Fenton system: Effects of gallic acid on iron cycling. Sep. Purif. Technol. 171: 144-150 (2016) https://doi.org/10.1016/j.seppur.2016.07.033
  10. Flohe L, Otting F. Superoxide dismutase assays. Methods Enzymol. 105: 93-104 (1984) https://doi.org/10.1016/S0076-6879(84)05013-8
  11. Gao J, Matthews KR. Effects of the photosensitizer curcumin in inactivating foodborne pathogens on chicken skin. Food Control 109: 106959 (2020) https://doi.org/10.1016/j.foodcont.2019.106959
  12. Han R, Zhao M, Wang Z, Liu H, Zhu S, Huang L, Wang Y, Wang L, Hong Y, Sha Y, Jiang, Y. Super-efficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type I photosensitizer. ACS Nano 14: 9532-9544 (2019) https://doi.org/10.1021/acsnano.9b05169
  13. Huang R, Choe E, Min D. Kinetics for singlet oxygen formation by riboflavin photosensitization and the reaction between riboflavin and singlet oxygen. J. Food Sci. 69: C726-C732 (2004) https://doi.org/10.1111/j.1365-2621.2004.tb09924.x
  14. Mao JW, Yin J, Ge Q, Jiang ZL, Gong JY. In vitro antioxidant activities of polysaccharides extracted from Moso Bamboo-Leaf. Int. J. Biol. Macromol. 55: 1-5 (2013) https://doi.org/10.1016/j.ijbiomac.2012.12.027
  15. Mironova R, Niwa T, Handzhiyski Y, Sredovska A, Ivanov I. Evidence for non-enzymatic glycosylation of Escherichia coli chromosomal DNA. Mol. Microbiol. 55: 1801-1811 (2005) https://doi.org/10.1111/j.1365-2958.2005.04504.x
  16. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247: 3170-3175 (1972) https://doi.org/10.1016/S0021-9258(19)45228-9
  17. Moradi A, Abolfathi M, Javadian M, Heidarian E, Roshanmehr H, Khaledi M, Nouri A. Gallic acid exerts nephroprotective, antioxidative stress, and anti-inflammatory effects against diclofenacinduced renal injury in malerats. Arch. Med. Res. 52: 380-388 (2021) https://doi.org/10.1016/j.arcmed.2020.12.005
  18. Piacham T, Isarankura Na Ayudhya C, Prachayasittikul V, Bulow L, Ye L. A polymer supported manganese catalyst useful as a superoxide dismutase mimic. Chem. Commun. 3: 1254-1255 (2003)
  19. Samson AAS, Lee J, Song JM. Inkjet printing-based photo-induced electron transfer reaction on parchment paper using riboflavin as a photosensitizer. Anal. Chim. Acta 1012: 49-59 (2018) https://doi.org/10.1016/j.aca.2018.02.004
  20. Xu C, Liu S, Liu Z, Song F, Liu S. Superoxide generated by pyrogallol reduces highly water-soluble tetrazolium salt to produce a soluble formazan: A simple assay for measuring superoxide anion radical scavenging activities of biological and abiological samples. Anal. Chim. Acta 793: 53-60 (2013) https://doi.org/10.1016/j.aca.2013.07.027
  21. Yang MY, Chang CJ, Chen LY. Blue light induced reactive oxygen species from flavin mononucleotide and flavin adenine dinucleotide on lethality of HeLa cells. J. Photoch. Photobio. B 173: 325-332 (2017) https://doi.org/10.1016/j.jphotobiol.2017.06.014
  22. Yoshimoto S, Kohara N, Sato N, Ando H, Ichihashi M. Riboflavin plays a pivotal role in the UVA-induced cytotoxicity of fibroblasts as a key molecule in the production of H2O2 by UVA radiation in collaboration with amino acids and vitamins. Int. J. Mol. Sci. (2020)
  23. Zaragoza O, Chrisman CJ, Castelli MV, Frases S, Cuenca-Estrella M, Rodriguez-Tudela JL, Casadevall A. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell. Microbiol. 10: 2043-2057 (2008) https://doi.org/10.1111/j.1462-5822.2008.01186.x