Acknowledgement
The research described in this paper was financially supported by the Natural Science Foundation of China under grant No. 51778635, U1934207 and 51978667, the Natural Science Foundations of Hunan Province under grant No.2019JJ40386. The above support is greatly appreciated.
References
- Bao, Y. and Becker, T. (2019), "Three-dimensional double friction pendulum system model including uplift and impact behavior: Formulation and numerical example", Eng. Struct., 199(15), 109579. https://doi.org/10.1016/j.engstruct.2019.109579.
- Bao, Y., Becker, T.C. and Hamaguchi, H. (2017), "Failure of double friction pendulum systems under pulse-type motions", Earthq. Eng. Struct. D., 46(2), 715-732. https://doi.org/10.1002/eqe.2827.
- Caltrans (2013), Seismic Design Criteria, Version 1.7, Caltrans., Sacramento, CA.
- Cardone, D., Gesualdi, G. and Brancato, P. (2015), "Restoring capability of friction pendulum seismic isolation systems", Bull. Earthq. Eng., 13, 2449-2480. https://doi.org/10.1007/s10518-014-9719-5.
- Castaldo, P. and Amendola, G. (2021), "Optimal DCFP bearing properties and seismic performance assessment in nondimensional form for isolated bridges", Earthq. Eng. Struct. D., 50(9), 2442-2461. https://doi.org/10.1002/eqe.3454.
- Castaldo, P. and Amendola, G. (2021). "Optimal sliding friction coefficients for isolated viaducts and bridges: A comparison study", Struct. Control. Hlth., 28(12), e2838. https://doi.org/10.1002/stc.2838.
- Castaldo, P., Mancini, G. and Palazzo, B. (2018), "Seismic reliability-based robustness assessment of three-dimensional reinforced concrete systems equipped with single-concave sliding devices", Eng. Struct., 163, 373-387. https://doi.org/10.1016/j.engstruct.2018.02.067.
- Castaldo, P., Palazzo, B. and Vecchia, P.D. (2015), "Seismic reliability of base-isolated structures with friction pendulum systems", Eng. Struct., 95, 80-93. https://doi.org/10.1016/j.engstruct.2015.03.053.
- Chung, L.L., Kao, P.S. and Yang, C.Y. (2015), "Optimal frictional coefficient of structural isolation system", J. Vib. Control, 21(3), 525-528. https://doi.org/10.1177/1077546313487938.
- Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, 2th Edition, McGraw-Hill Inc., New York, NY, USA.
- Drozdov, Y.N., Nadein, V.A. and Puchkon, V.N. (2007), "The effect of earthquake parameters on the tribological characteristics of friction pendulum systems (seismic isolators)", J. Mach. Manuf. Rel., 36(2), 143-152. https://doi.org/10.3103/S1052618807020082.
- Guerreiro, L., Azevedo, J. and Muhr, A.H. (2007), "Seismic tests and numerical modeling of a rolling-ball isolation system", J. Earthq. Eng., 11(1), 49-66. https://doi.org/10.1080/13632460601123172.
- Han, Q., Zhou, Y.L., Zhong, Z.L. and Du, X.L. (2017), "Seismic capacity evaluation of exterior shear keys of highway bridges", J. Bridge Eng., 22(2), 0401611. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000978.
- He, W.K., Jiang, L.Z. and Wei, B. (2020), "The influence of pier height on the seismic isolation effectiveness of friction pendulum system for Double-Track railway bridges", Struct., 28, 1870-1884. https://doi.org/10.1016/j.istruc.2020.10.022.
- Hwang, J.S., Chang, K.C. and Tsai, M.H. (1997), "Composite damping ration of seismically isolated regular bridges", Eng. Struct., 19(1), 55-62. https://doi.org/10.1016/S0141-0296(96)00040-5.
- Kumar, M., Whittaker, A.S. and Constantinou, M.C. (2015), "Characterizing friction in sliding isolation bearings", Earthq. Eng. Struct. D., 44(9), 1409-1425. https://doi.org/10.1002/eqe.2524.
- Li, S.S., Wei, B., Tan, H., Li, C.B. and Zhao, X.M. (2021), "Equivalence of friction and viscous damping in a springfriction system with concave friction distribution", J. Test. Eval., 49(1), 372-395. https://doi.org/10.1520/JTE20190885.
- Mokha, A., Constantinou, M.C. and Reinhorn, A. (1993), "Verification of friction model of teflon bearings under triaxial load", J. Struct. Eng., 119(1), 240-261. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:1(240).
- Noori, H.R., Memarpour, M.M. and Yakhchalian, M. (2019), "Effects of ground motion directionality on seismic behavior of skewed bridges considering SSI", Soil Dyn. Earthq. Eng., 127, 105820. https://doi.org/10.1016/j.soildyn.2019.105820.
- Ostermeyer, G.P., Muller, M., Brumme, S. and Srisupattarawanit, T. (2019), "Stability analysis with an NVH minimal model for brakes under consideration of polymorphic uncertainty of friction", Vib., 2(1), 135-156. https://doi.org/10.3390/vibration2010009.
- Rohmer, J. and Baudrit, C. (2011), "The use of the possibility theory to investigate the epistemic uncertainties within scenario-based earthquake risk assessments", Nat. Hazard., 56(3), 613-632. https://doi.org/10.1007/s11069-010-9578-6.
- Roy, A., Santra, A. and Roy, R. (2018), "Estimating seismic response under bi-directional shaking per uni-directional analysis: Identification of preferred angle of incidence", Soil Dyn. Earthq. Eng., 106, 163-181. https://doi.org/10.1016/j.soildyn.2017.12.022.
- Sevket, A. and Michael, C.C. (2011), "Example of application of response spectrum analysis for seismically isolated curved bridges including soil-foundation effects", Soil Dyn. Earthq. Eng., 31, 648-661. https://doi.org/10.1016/j.soildyn.2010.12.002.
- Standard of the Ministry of Communications of P.R. China (1989), Specifications of Earthquake Resistant Design for Highway Engineering, Standard JTJ004-89.
- Standard of the Ministry of Communications of P.R. China (2008), Rules for Seismic Design of Highway Bridges, Standard JTG/TB02-01-2008.
- Tsai, C.S., Su, H.C. and Chiang, T.C. (2014), "Equivalent series system to model a multiple friction pendulum system with numerous sliding interfaces for seismic analyses", Earthq. Eng. Eng. Vib., 1, 85-99. https://doi.org/CNKI:SUN:EEEV.0.2014-01-008. https://doi.org/10.1007/s11803-014-0214-4
- Wei, B., Dai, G.L., Wen, Y. and Xia, Y. (2014), "Seismic performance of an isolation system of rolling friction with spring", J. Cent. South Univ., 21(4), 1518-1525. https://doi.org/10.1007/s11771-014-2092-3.
- Wei, B., Fu, Y.J., Li, S.S. and Jiang, L.Z. (2021), "Parameter optimization analysis of plane friction coupling effect", Mech. Bas. Des. Struct., 28(2), 1966636. https://doi.org/10.1080/15397734.2021.1966636.
- Wei, B., Li, C.B. and Jia, X.L. (2019), "Effects of shear keys on seismic performance of an isolation system", Smart. Struct. Syst., 24(3), 345-360. https://doi.org/10.12989/sss.2019.24.3.345.
- Wei, B., Wang, P. and He, X.H. (2018a), "The impact of the convex friction distribution on the seismic response of a spring-friction isolation system", J. Civil Eng., 22(4), 1203-1213. https://doi.org/10.1007/s12205-017-0938-6.
- Wei, B., Wang, P. and He, X.H. (2018b), "Seismic isolation characteristics of a friction system", J. Test. Eval., 46(4), 1411-1420. https://doi.org/10.1520/JTE20160598.
- Wei, B., Wang, P. and Liu, W.A. (2016b), "The impact of the concave distribution of rolling friction coefficient on the seismic isolation performance of a spring-rolling system", Int. J. Nonlin. Mech., 83(1), 65-77. https://doi.org/10.1016/j.ijnonlinmec.2016.04.001.
- Wei, B., Wang, P. and Yang, T.H. (2016a), "Effects of friction variability on isolation performance of rolling-spring systems", J. Cent. South Univ., 23(1), 233-239. https://doi.org/10.1007/s11771-016-3066-4.
- Wei, B., Yang, T.H. and Jiang, L.Z. (2015) "Influence of friction variability on isolation performance of a rolling-damper isolation system", J Vibroeng., 17(2), 792-801.
- Wu, T.J., Li, J.Z. and Guan, Z.G. (2011), "Influence of bidirectional coupling effect on seismic response of FPS isolated bridge", J. Vib. Shock, 30(2), 119-123. https://doi.org/10.3969/j.issn.1000-3835.2011.02.023.
- Xiang, N.L. and Li, J.Z. (2016), "Seismic performance of highway bridges with different transverse unseating-prevention devices", J. Bridge Eng., 21(9), 04016045. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000909.
- Xu, L.Q., Fu, P.Y. and Spencer, B.F.J. (2020), "Maintaining bridge alignment during seismic events: Shear key design and implementation guidelines", J. Bridge. Eng., 25(5), 04020017. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001549.
- Zayas, V., Low, S. and Mahin, S. (1987), "The FPS earthquake resisting system", Report No UCB / EERC-87 /01, Department of Civil Engineering, University of California, Berkeley, California, U.S.A.
- Zayas, V., Low, S., Bozzo, L. and Mahin, S. (1989), "Feasibility and performance studies on improving the earthquake resistance of new and existing buildings using the friction pendulum system", Report No UBC/EERC-89/09, Department of Civil Engineering, University of California, Berkeley, California, U.S.A.
- Zayas, V.A., Low, S.S. and Mahin, S.A. (1990), "A simple pendulum technique for achieving seismic isolation", Earthq. Spectra, 6(2), 317-333. https://doi.org/10.1193/1.1585573.