References
- Afzali-Naniz, O. and Mazloom, M. (2019a), "Assessment of the influence of micro- and nano-silica on the behavior of self-compacting lightweight concrete using full factorial design", Asian J. Civil Eng., 20(1), 57-70. https://doi.org/10.1007/s42107-018-0088-2.
- Afzali-Naniz, O. and Mazloom, M. (2019b), "Fracture behavior of self-compacting semi-lightweight concrete containing nano-silica", Adv. Struct. Eng., 22(10), 2264-2277. https://doi.org/10.1177/1369433219837426.
- ASTM C1609/C1609M-19a (2019), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), ASTM International, West Conshohocken, PA, USA.
- ASTM E399-17 (2017), Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials, ASTM International, West Conshohocken, PA, USA.
- Bazant, Z.P., Gopalaratnaml, V.S., Buyukozturk, O., Cedolin, L., Darwin, D., Elices, M., ... & Reinhardt, H.W. (1991), "Fracture mechanics of concrete", Mech. Fract. Prog. Crack. Concrete Struct., 1-85.
- Bentur, A. and Mindess, S. (1990), Fiber Reinforced Cementitious Composites Amsterdam, Elsevier.
- Bhosale, A.B., Lakavath, C. and Prakash, S.S. (2020), "Multi-linear tensile stress-crack width relationships for hybrid fibre reinforced concrete using Inverse analysis and digital image correlation", Eng. Struct., 225, 111275. https://doi.org/10.1016/j.engstruct.2020.111275.
- Reddy, K.C. and Subramaniam, K.V. (2017), "Analysis for multi-linear stress-crack opening cohesive relationship: Application to macro-synthetic fiber reinforced concrete", Eng. Fract. Mech., 169, 128-145. https://doi.org/10.1016/j.engfracmech.2016.11.015.
- Criado, M., Gimenez, M., Menendez, E. and Alonso, M.C. (2020), "Durability performance of uncracked and cracked nano additioned UHPFRCs in a dynamic leaching system", 74th RILEM Annual Week and 40th Cement and Concrete Science Conference, Sheffield, UK.
- Dzaye, E.D., Schutter, G.D. and Aggelis, D. (2018), "Application of digital image correlation to cement paste", Multidisc. Digit. Publish. Inst. Proc., 2, 446. https://doi.org/10.3390/ICEM18-05332.
- Fischer, G. and Li, V.C. (2002), "Effect of matrix ductility on deformation behavior of steel-reinforced ECC flexural members under reversed cyclic loading conditions", Struct. J., 99(6), 781-90.
- Fukuyama, H. (2000), "Structural performance of engineered cementitious composite elements. composite and hybrid structures", Proceedings of 6th ASCCS Conference, 969-76. ASCCS-6 Secretariat.
- Fukuyama, H., Sato, Y., Li, V.C., Matsuzaki, Y. and Mihashi, H. (2000), "Ductile engineered cementitious composite elements for seismic structural applications", Proceedings of the 12 WCEE, 1672.
- Hillerborg, A., Modeer, M. and Petersson, P.E. ( (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7.
- Hillerborg, A. (1980), "Analysis of fracture by means of the fictitious crack model, particularly for fibre reinforced concrete", Int. J. Cement Compos., 2(4), 177-184.
- Hillerborg, A. (1985), "The theoretical basis of a method to determine the fracture energy GF of concrete", Mater. Struct., 18(4), 291-296. https://doi.org/10.1007/BF02472919.
- Huang, X., Ranade, R. and Li, V.C. (2013), "Feasibility study of developing green ECC using iron ore tailings powder as cement replacement", J. Mater. Civil Eng., 25(7), 923-931. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000674.
- Jia, Y., Su, H., Lai, Z., Bai, Y., Li, F. and Zhou, Z. (2020), "Moment-curvature behavior of PP-ECC bridge piers under reversed cyclic lateral loading: An experimental study", Appl. Sci., 10(12), 4056. https://doi.org/10.3390/app10124056.
- Jun, Z. and Stang, H. (1998), "Fatigue performance in flexure of fiber reinforced concrete", Mater. J., 95(1), 58-67.
- Kanda, T. and Li, V.C. (2006), "Practical design criteria for saturated pseudo strain hardening behavior in ECC", J. Adv. Concrete Technol., 4(1), 59-72. https://doi.org/10.3151/jact.4.59.
- Karamloo, M. and Mazloom, M. (2018), "An efficient algorithm for scaling problem of notched beam specimens with various notch to depth ratios", Comput. Concrete, 22(1), 39-51. http://doi.org/10.12989/cac.2018.22.1.039.
- Kazemi, M.T., Golsorkhtabar, H., Beygi, M.H.A. and Gholamitabar, M. (2017), "Fracture properties of steel fiber reinforced high strength concrete using work of fracture and size effect methods", Constr. Build. Mater., 142, 482-489. https://doi.org/10.1016/j.conbuildmat.2017.03.089.
- Kim, J.K., Kim, J.S., Ha, G.J. and Kim, Y.Y. (2007), "Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag", Cement Concrete Res., 37(7), 1096-1105. https://doi.org/10.1016/j.cemconres.2007.04.006.
- Lepech, M.D., Li, V.C., Robertson, R.E. and Keoleian, G.A. (2008), "Design of green engineered cementitious composites for improved sustainability", ACI Mater. J., 105(6), 567.
- Li, V.C. (1992), "A simplified micromechanical model of compressive strength of fiber-reinforced cementitious composites", Cement Concrete Compos., 14(2), 131-141. https://doi.org/10.1016/0958-9465(92)90006-H.
- Li, V.C. (1993), "From micromechanics to structural engineering-the design of cementitous composites for civil engineering applications", Struct. Eng./Earthq. Eng., 10(2), 37-48.
- Li, V.C. (1992), "Postcrack scaling relations for fiber reinforced cementitious composites", J. Mater. Civil Eng., 4(1), 41-57. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:1(41).
- Li, V.C. (2002), "Large volume, high-performance applications of fibers in civil engineering", J. Appl. Polym. Sci., 83(3), 660-686. https://doi.org/10.1002/app.2263.
- Li, V.C. (2003), "On engineered cementitious composites (ECC)", J. Adv. Concrete Technol., 1(3), 215-230. https://doi.org/10.3151/jact.1.215.
- Li, V.C. (2019), Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable and Resilient Infrastructure, Springer.
- Li, M. and Li, V.C. (2011), "Cracking and healing of engineered cementitious composites under chloride environment", ACI Mater. J. 108(3), 333-340.
- Li, V.C., Wang, Y. and Backer, S. (1991), "A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites", J. Mech. Phys. Solid., 39(5), 607-625. http://doi.org/10.1016/0022-5096(91)90043-N.
- Li, V.C., Wu, C., Wang, S., Ogawa, A. and Saito, T. (2002), "Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC)", Mater. J., 99(5), 463-472.
- Lim, I., Chern, J.C., Liu, T. and Chan, Y.W. (2012), "Effect of ground granulated blast furnace slag on mechanical behavior of PVA-ECC", J. Marine Sci. Technol., 20(3), 319-324. http://doi.org/10.51400/2709-6998.1810.
- Lin, J.X., Song, Y., Xie, Z.H., Guo, Y.C., Yuan, B., Zeng, J.J. and Wei, X. (2020), "Static and dynamic mechanical behavior of engineered cementitious composites with PP and PVA fibers", J. Build. Eng., 29, 101097. https://doi.org/10.1016/j.jobe.2019.101097.
- Marshall, D.B. and Cox, B.N. (1988), "A J-integral method for calculating steady-state matrix cracking stresses in composites", Mech. Mater., 7(2), 127-133. https://doi.org/10.1016/0167-6636(88)90011-7.
- Mazloom, M., Karimpanah, H. and Karamloo, M. (2020), "Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures", Adv. Concrete Constr., 9(4), 375-386. https://doi.org/10.12989/acc.2020.9.4.375.
- Mazloom, M., Homayooni, S.M. and Miri, S.M. (2018a), "Effect of rock flour type on rheology and strength of self-compacting lightweight concrete", Comput. Concrete, 21(2), 199-207. https://doi.org/10.12989/cac.2018.21.2.199.
- Mazloom, M. and Mirzamohammadi, S. (2020), "Fracture of fibre-reinforced cementitious composites after exposure to elevated temperatures", Mag. Concrete Res., 1-13. https://doi.org/10.1680/jmacr.19.00401.
- Mazloom, M. and Mirzamohammadi, S. (2021), "Computing the fracture energy of fiber reinforced cementitious composites using response surface methodology", Adv. Comput. Des., 6(3), 225-239. http://doi.org/10.12989/acd.2021.6.3.225.
- Mazloom, M., Pourhaji, P., Shahveisi, M. and Jafari, S. H. (2019), "Studying the Park-Ang damage index of reinforced concrete structures based on equivalent sinusoidal waves", Struct. Eng. Mech., 72(1), 83-97. http://doi.org/10.12989/sem.2019.72.1.083.
- Mazloom, M., Soltani, A., Karamloo, M., Hassanloo, A. and Ranjbar, A. (2018b), "Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete", Adv. Mater. Res., 7(1), 45. http://doi.org/10.12989/amr.2018.7.1.045.
- Mitrovic, A., Antonovic, D., Tanasic, I., Mitrovic, N., Bakic, G., Popovic, D. and Milosevic, M. (2019) , "3D digital image correlation analysis of the shrinkage strain in four dual cure composite cements", BioMed Res. Int., 2019, Article ID2041348. https://doi.org/10.1155/2019/2041348.
- Ong, K.C.G., Basheerkhan, M. and Paramasivam, P. (1999), "Resistance of fibre concrete slabs to low velocity projectile impact", Cement Concrete Compos., 21(5-6), 391-401. https://doi.org/10.1016/S0958-9465(99)00024-4.
- Pakravan, H.R. and Ozbakkaloglu, T. (2019), "Synthetic fibers for cementitious composites: A critical and in-depth review of recent advances", Constr. Build. Mater., 207, 491-518. https://doi.org/10.1016/j.conbuildmat.2019.02.078.
- Pan, Z., Wu, C., Liu, J., Wang, W. and Liu, J. (2015), "Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC)", Constr. Build. Mater., 78, 397-404. https://doi.org/10.1016/j.conbuildmat.2014.12.071.
- Parra-Montesinos, G. and Wight, J.K. (2000), "Seismic response of exterior RC column-to-steel beam connections", J. Struct. Eng., 126(10), 1113-1121. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1113).
- Petersson, P.E. (1981), "Crack growth and development of fracture zones in plain concrete and similar materials", Doctoral Dissertation, Lund University, Sweden.
- Poppe, A.M. and De Schutter, G, (2005), "Cement hydration in the presence of high filler contents", Cement Concrete Res., 35(12), 2290-2299. https://doi.org/10.1016/j.cemconres.2005.03.008.
- Qian, S. and Li, V.C. (2008), "Simplified inverse method for determining the tensile properties of strain hardening cementitious composites (SHCC)", J. Adv. Concrete Technol., 6(2), 353-363. https://doi.org/10.3151/jact.6.353.
- Qing, L., Cao, G., Guan, J. and Li, S. (2021), "Experimental method for determining the fracture toughness of concrete based on the modified two-parameter model and DIC technique", Fatig. Fract. Eng. Mater. Struct., 45(2), 400-410. https://doi.org/10.1111/ffe.13602.
- Rice, J.R. (1968), "A path independent integral and the approximate analysis of strain concentration by notches and cracks", J. Appl. Mech., 35(2), 379-386. https://doi.org/10.1115/1.3601206.
- RILEM, D.R. (1985), "Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams", Mater. Struct., 18(106), 285-290. https://doi.org/10.1007/BF02472917
- Salehi, H. and Mazloom, M. (2019a), "Opposite effects of ground granulated blast-furnace slag and silica fume on the fracture behavior of self-compacting lightweight concrete", Constr. Build. Mater., 222, 622-632. https://doi.org/10.1016/j.conbuildmat.2019.06.183.
- Salehi, H. and Mazloom, M. (2019b), "An experimental investigation on fracture parameters and brittleness of self-compacting lightweight concrete containing magnetic field treated water", Arch. Civil Mech. Eng ., 19, 803-819. https://doi.org/10.1016/j.acme.2018.10.008.
- Salehi, H. and Mazloom, M. (2019c), "Effect of magnetic-field intensity on fracture behaviors of self-compacting lightweight concrete", Mag. Concrete Res ., 71(13), 665-679. https://doi.org/10.1680/jmacr.17.00418.
- Shen, B. and Paulino, G.H. (2011), "Identification of cohesive zone model and elastic parameters of fiber-reinforced cementitious composites using digital image correlation and a hybrid inverse technique", Cement Concrete Compos., 33(5), 572-85. https://doi.org/10.1016/j.cemconcomp.2011.01.005.
- Swaddiwudhipong, S., Lu, H.R. and Wee, T.H. (2003), "Direct tension test and tensile strain capacity of concrete at early age", Cement Concrete Res., 33(12), 2077-2084. https://doi.org/10.1016/S0008-8846(03)00231-X.
- Tsivilis, S., Batis, G., Chaniotakis, E., Grigoriadis, G. and Theodossis, D. (2000), "Properties and behavior of limestone cement concrete and mortar", Cement Concrete Res., 30(10), 1679-1683. https://doi.org/10.1016/S0008-8846(00)00372-0.
- Wang, S. and Li, V.C. (2007), "Engineered cementitious composites with high-volume fly ash", ACI Mater. J., 104(3), 233.
- Wu, C., Pan, Z., Jin, C. and Meng, S. (2020), "Evaluation of deformation-based seismic performance of RECC frames based on IDA method", Eng. Struct., 211, 110499. https://doi.org/10.1016/j.engstruct.2020.110499.
- Yang, E.H. and Li, V.C. (2010), "Strain-hardening fiber cement optimization and component tailoring by means of a micromechanical model", Constr. Build. Mater., 24(2), 130-139. https://doi.org/10.1016/j.conbuildmat.2007.05.014.
- Yang, E.H., Yang, Y. and Li, V.C. (2007), "Use of high volumes of fly ash to improve ECC mechanical properties and material greenness", ACI Mater. J., 104(6), 620.
- Zhang, J. and Li, V.C. (2002), "Effect of inclination angle on fiber rupture load in fiber-reinforced cementitious composites", Compos. Sci. Technol., 62(6), 775-781. https://doi.org/10.1016/S0266-3538(02)00045-3.
- Zhang, Z., Yang, F., Liu, J.C. and Wang, S. (2020), ".Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash", Cement Concrete Res., 137, 106200. https://doi.org/10.1016/j.cemconres.2020.106200.
- Zhao, P., Zsaki, A.M. and Nokken, M.R. (2018), "Using digital image correlation to evaluate plastic shrinkage cracking in cement-based materials", Constr. Build. Mater., 182, 108-117. https://doi.org/10.1016/j.conbuildmat.2018.05.239.
- Zhou, J., Qian, S., Beltran, M.G.S., Ye, G., van Breugel, K. and Li, V.C. (2010), "Development of engineered cementitious composites with limestone powder and blast furnace slag", Mater. Struct., 43(6), 803-14. https://doi.org/10.1617/s11527-009-9549.