DOI QR코드

DOI QR Code

Meshless local Petrov-Galerkin method for rotating Rayleigh beam

  • Panchore, Vijay (Department of Mechanical Engineering, Maulana Azad National Institute of Technology)
  • 투고 : 2020.02.02
  • 심사 : 2021.12.13
  • 발행 : 2022.03.10

초록

In this work, the free vibration problem of a rotating Rayleigh beam is solved using the meshless Petrov-Galerkin method which is a truly meshless method. The Rayleigh beam includes rotatory inertia in addition to Euler-Bernoulli beam theory. The radial basis functions, which satisfy the Kronecker delta property, are used for the interpolation. The essential boundary conditions can be easily applied with radial basis functions. The results are obtained using six nodes within a subdomain. The results accurately match with the published literature. Also, the results with Euler-Bernoulli are obtained to compare the change in higher natural frequencies with change in the slenderness ratio (${\sqrt{A_0R^2/I_0}}$). The mass and stiffness matrices are derived where we get two stiffness matrices for the node and boundary respectively. The non-dimensional form is discussed as well.

키워드

참고문헌

  1. Andreaus, U., Batra, R.C. and Porfiri, M. (2005), "Vibrations of cracked Euler-Bernoulli beams using Meshless Local Petrov-Galerkin (MLPG) method", Comput. Model. Eng. Sci., 9(2), 111-131.
  2. Atluri, S.N. (2004), The Meshless Method (MLPG) for Domain and BIE Discretizations, Tech Science Press, Forsyth, GA.
  3. Atluri, S.N., Cho, J.Y. and Kim, H.G. (1999), "Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations", Comput. Mech., 24(5), 334-347. https://doi.org/10.1007/s004660050456.
  4. Atluri, S.N. and Shen, S. (2002), "The Meshless Local Petrov-Galerkin (MLPG) method: A simple & less-costly alternative to the finite element and boundary element methods", Comput. Model. Eng. Sci., 3(1), 11-51. https://doi.org/10.3970/cmes.2002.003.011.
  5. Banerjee, J.R. and Jackson, D.R. (2013), "Free vibration of a rotating tapered Rayleigh beam: A dynamic stiffness method of solution", Comput. Struct., 124, 11-20. https://doi.org/10.1016/j.compstruc.2012.11.010.
  6. Bauchau, O.A. and Hong, C.H. (1987), "Finite element approach to rotor blade modeling", J. Am. Helicopt. Soc., 32(1), 60-67. https://doi.org/10.4050/JAHS.32.60.
  7. Bhat, S. and Ganguli, R. (2018), "Non-rotating beams isospectral to rotating Rayleigh beams", Int. J. Mech. Sci., 142, 440-455. https://doi.org/10.1016/j.ijmecsci.2018.04.049.
  8. Bisplinghoff, R.L., Ashley, H. and Halfman, R.L. (1996), Aeroelasticity, Dover Publications, New York, U.S.A.
  9. Bokaian, A. (1990), "Natural frequencies of beams under tensile axial loads", J. Sound Vib., 142(3), 481-498. https://doi.org/10.1016/0022-460X(90)90663-K.
  10. Chekab, A.A. and Sani, A.A. (2017), "Novel techniques for improving the interpolation functions of Euler-Bernoulli beam", Struct. Eng. Mech., 63(1), 11-21. https://doi.org/10.12989/sem.2017.63.1.011.
  11. Chung, J. and Yoo, H.H. (2002), "Dynamic analysis of a rotating cantilever beam by using the finite element method", J. Sound Vib., 249(1), 147-164. https://doi.org/10.1006/jsvi.2001.3856.
  12. Cui, X.Y., Liu, G.R., Li, G.Y. and Zheng, G. (2008), "A rotation free formulation for static and free vibration analysis of thin beams using gradient smoothing technique", Comput. Model. Eng. Sci., 38(3), 217-229.
  13. Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory", Struct. Eng. Mech., 61(6), 721-736. https://doi.org/10.12989/sem.2017.61.6.721.
  14. Elgohary, T.A., Dong, L., Junkins, J.L. and Atluri, S.N. (2014), "Time domain inverse problems in nonlinear systems using collocation & radial basis functions", Comput. Model. Eng. Sci., 100(1), 59-84.
  15. Giurgiutiu, V. and Stafford, R.O. (1977), "Semi-analytical methods for frequencies and mode shapes of rotor blades", Vertica, 1, 291-306.
  16. Gunda, J.B. and Ganguli, R. (2007), "Stiff-string basis functions for vibration analysis of high speed rotating beams", J. Appl. Mech., 75(2), 0245021-0245025. https://doi.org/10.1115/1.2775497.
  17. Gunda, J.B., Gupta, R.K. and Ganguli, R. (2008), "Hybrid stiff-string-polynomial basis functions for vibration analysis of high speed rotating beams", Comput. Struct., 87(3-4), 254-265. https://doi.org/10.1016/j.compstruc.2008.09.008.
  18. Hadji, L., Zouatnia, N. and Kassoul, A. (2017), "Wave propagation in functionally graded beams using various higher-order shear deformation beams theories", Struct. Eng. Mech., 62(2), 143-149. https://doi.org/10.12989/sem.2017.62.2.143.
  19. Hoa, S.V. (1979), "Vibration of a rotating beam with tip mass", J. Sound Vib., 67(3), 369-381. https://doi.org/10.1016/0022-460X(79)90542-X.
  20. Jaworska, I. and Orkisz, J. (2018), "On nonlinear analysis by the multipoint meshless FDM", Eng. Anal. Bound. Elem., 92, 241-243. https://doi.org/10.1016/j.enganabound.2017.11.018.
  21. Johnson, W. (1980), Helicopter Theory, Dover Publications, New York, U.S.A.
  22. Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617.
  23. Kim, Y.W. (2017), "Analytic solution of Timoshenko beam excited by real seismic support motions", Struct. Eng. Mech., 62(2), 247-258. https://doi.org/10.12989/sem.2017.62.2.247.
  24. Li, Q., Soric, J., Jarak, T. and Atluri, S.N. (2005), "A locking-free meshless local Petrov-Galerkin formulation for thick and thin plates", J. Comput. Phys., 208(1), 116-133. https://doi.org/10.1016/j.jcp.2005.02.008.
  25. Liu, G.R. (2003), Meshfree Methods, CRC Press, New York, U.S.A.
  26. Long, S. and Atluri, S.N. (2002), "A meshless local Petrov-Galerkin method for solving the bending problem of a thin plate", Comput. Model. Eng. Sci., 3(1), 53-63.
  27. Most, T. and Bucher, C. (2005), "A moving least squares weighting function for the Element-free Galerkin method which almost fulfills essential boundary conditions", Struct. Eng. Mech., 21(3), 315-332. https://doi.org/10.12989/sem.2005.21.3.315.
  28. Nagaraj, V.T. and Shanthakumar, P. (1975), "Rotor blade vibration by the Galerkin finite element method", J. Sound Vib., 43(3), 575-577. https://doi.org/10.1016/0022-460X(75)90013-9.
  29. Panchore, V. and Ganguli, R. (2017), "Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam", Struct. Eng. Mech., 61(6), 765-773. https://doi.org/10.12989/sem.2017.61.6.765.
  30. Panchore, V., Ganguli, R. and Omkar, S.N. (2015), "Meshless local Petrov-Galerkin method for rotating Euler-Bernoulli beam", Comput. Model. Eng. and Sci., 104(5), 353-373.
  31. Panchore, V., Ganguli, R. and Omkar, S.N. (2015), "Meshless local Petrov-Galerkin method for rotating Timoshenko beam: A locking-free shape function formulation", Comput. Model. Eng. Sci., 108(4), 215-237.
  32. Panchore, V., Ganguli, R. and Omkar, S.N. (2017), "Galerkin Method for a rotating Euler-Bernoulli beam", Int. J. Comput. Meth. Eng. Sci. Mech., 19(1), 11-21. https://doi.org/10.1080/15502287.2017.1378772.
  33. Putter, S. and Manor, H. (1978), "Natural frequencies of radial rotating beams", J. Sound Vib., 56(2), 175-185. https://doi.org/10.1016/S0022-460X(78)80013-3.
  34. Raju, I.S., Phillips, D.R. and Krishnamurthy, T. (2004), "A radial basis function approach in the meshless local Petrov-Galerkin method for Euler-Bernoulli beam problems'', Comput. Mech., 34(6), 464-474. https://doi.org/10.1007/s00466-004-0591-z.
  35. Reddy, J.N. (2005), An Introduction to the Finite Element Method, Tata McGraw-Hill, New York, U.S.A.
  36. Rossit, C.A., Bambill, D.V. and Gilardi, G.J. (2017), "Free vibrations of AFG cantilever tapered beams carrying attached masses", Struct. Eng. Mech., 61(5), 685-691. https://doi.org/10.12989/sem.2017.61.5.685.
  37. Sageresan, N. and Drathi, R. (2008), "Crack propagation in concrete using meshless method", Comput. Model. Eng. Sci., 32(2),103-112.
  38. Setoodeh, A. and Rezae, M. (2017), "Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation", Struct. Eng. Mech., 61(2), 209-220. https://doi.org/10.12989/sem.2017.61.2.209.
  39. Sushma, D. and Ganguli, R. (2012), "A collocation approach for finite element basis functions for Euler-Bernoulli beams undergoing rotations and transverse bending vibration", Int. J. Comput. Meth. Eng. Sci. Mech., 13(4), 290-307. https://doi.org/10.1080/15502287.2012.682194.
  40. Tan, G., Shan, J., Wu, C. and Wang, W. (2017), "Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems", Struct. Eng. Mech., 63(4), 551-565. https://doi.org/10.12989/sem.2017.63.4.551.
  41. Vinod, K.G., Gopalakrishnan, S. and Ganguli, R. (2007), "Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements", Int. J. Solid. Struct., 44(18), 5875-5893. https://doi.org/10.1016/j.ijsolstr.2007.02.002.
  42. Wang, G. and Wereley, N.M. (2004), "Free vibration analysis of rotating blades with uniform tapers", AIAA J., 42(12), 2429-2437. https://doi.org/10.2514/1.4302.
  43. Wen, P.H., Aliabadi, M.H. and Liu, Y.W. (2008), "Meshless Method for Crack Analysis in Functionally Graded Materials with Enriched Radial Base Functions", Comput. Model. Eng. Sci., 30(3), 133-147.
  44. Zhang, Y., Yang, X. and Zhang, W. (2020), "Modeling and stability analysis of a flexible rotor based on the Timoshenko beam theory", Acta Mechanica Solida Sinica, 33(5), 281-293. https://doi.org/10.1007/s10338-019-00146-y.