References
- Andreaus, U., Batra, R.C. and Porfiri, M. (2005), "Vibrations of cracked Euler-Bernoulli beams using Meshless Local Petrov-Galerkin (MLPG) method", Comput. Model. Eng. Sci., 9(2), 111-131.
- Atluri, S.N. (2004), The Meshless Method (MLPG) for Domain and BIE Discretizations, Tech Science Press, Forsyth, GA.
- Atluri, S.N., Cho, J.Y. and Kim, H.G. (1999), "Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations", Comput. Mech., 24(5), 334-347. https://doi.org/10.1007/s004660050456.
- Atluri, S.N. and Shen, S. (2002), "The Meshless Local Petrov-Galerkin (MLPG) method: A simple & less-costly alternative to the finite element and boundary element methods", Comput. Model. Eng. Sci., 3(1), 11-51. https://doi.org/10.3970/cmes.2002.003.011.
- Banerjee, J.R. and Jackson, D.R. (2013), "Free vibration of a rotating tapered Rayleigh beam: A dynamic stiffness method of solution", Comput. Struct., 124, 11-20. https://doi.org/10.1016/j.compstruc.2012.11.010.
- Bauchau, O.A. and Hong, C.H. (1987), "Finite element approach to rotor blade modeling", J. Am. Helicopt. Soc., 32(1), 60-67. https://doi.org/10.4050/JAHS.32.60.
- Bhat, S. and Ganguli, R. (2018), "Non-rotating beams isospectral to rotating Rayleigh beams", Int. J. Mech. Sci., 142, 440-455. https://doi.org/10.1016/j.ijmecsci.2018.04.049.
- Bisplinghoff, R.L., Ashley, H. and Halfman, R.L. (1996), Aeroelasticity, Dover Publications, New York, U.S.A.
- Bokaian, A. (1990), "Natural frequencies of beams under tensile axial loads", J. Sound Vib., 142(3), 481-498. https://doi.org/10.1016/0022-460X(90)90663-K.
- Chekab, A.A. and Sani, A.A. (2017), "Novel techniques for improving the interpolation functions of Euler-Bernoulli beam", Struct. Eng. Mech., 63(1), 11-21. https://doi.org/10.12989/sem.2017.63.1.011.
- Chung, J. and Yoo, H.H. (2002), "Dynamic analysis of a rotating cantilever beam by using the finite element method", J. Sound Vib., 249(1), 147-164. https://doi.org/10.1006/jsvi.2001.3856.
- Cui, X.Y., Liu, G.R., Li, G.Y. and Zheng, G. (2008), "A rotation free formulation for static and free vibration analysis of thin beams using gradient smoothing technique", Comput. Model. Eng. Sci., 38(3), 217-229.
- Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory", Struct. Eng. Mech., 61(6), 721-736. https://doi.org/10.12989/sem.2017.61.6.721.
- Elgohary, T.A., Dong, L., Junkins, J.L. and Atluri, S.N. (2014), "Time domain inverse problems in nonlinear systems using collocation & radial basis functions", Comput. Model. Eng. Sci., 100(1), 59-84.
- Giurgiutiu, V. and Stafford, R.O. (1977), "Semi-analytical methods for frequencies and mode shapes of rotor blades", Vertica, 1, 291-306.
- Gunda, J.B. and Ganguli, R. (2007), "Stiff-string basis functions for vibration analysis of high speed rotating beams", J. Appl. Mech., 75(2), 0245021-0245025. https://doi.org/10.1115/1.2775497.
- Gunda, J.B., Gupta, R.K. and Ganguli, R. (2008), "Hybrid stiff-string-polynomial basis functions for vibration analysis of high speed rotating beams", Comput. Struct., 87(3-4), 254-265. https://doi.org/10.1016/j.compstruc.2008.09.008.
- Hadji, L., Zouatnia, N. and Kassoul, A. (2017), "Wave propagation in functionally graded beams using various higher-order shear deformation beams theories", Struct. Eng. Mech., 62(2), 143-149. https://doi.org/10.12989/sem.2017.62.2.143.
- Hoa, S.V. (1979), "Vibration of a rotating beam with tip mass", J. Sound Vib., 67(3), 369-381. https://doi.org/10.1016/0022-460X(79)90542-X.
- Jaworska, I. and Orkisz, J. (2018), "On nonlinear analysis by the multipoint meshless FDM", Eng. Anal. Bound. Elem., 92, 241-243. https://doi.org/10.1016/j.enganabound.2017.11.018.
- Johnson, W. (1980), Helicopter Theory, Dover Publications, New York, U.S.A.
- Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617.
- Kim, Y.W. (2017), "Analytic solution of Timoshenko beam excited by real seismic support motions", Struct. Eng. Mech., 62(2), 247-258. https://doi.org/10.12989/sem.2017.62.2.247.
- Li, Q., Soric, J., Jarak, T. and Atluri, S.N. (2005), "A locking-free meshless local Petrov-Galerkin formulation for thick and thin plates", J. Comput. Phys., 208(1), 116-133. https://doi.org/10.1016/j.jcp.2005.02.008.
- Liu, G.R. (2003), Meshfree Methods, CRC Press, New York, U.S.A.
- Long, S. and Atluri, S.N. (2002), "A meshless local Petrov-Galerkin method for solving the bending problem of a thin plate", Comput. Model. Eng. Sci., 3(1), 53-63.
- Most, T. and Bucher, C. (2005), "A moving least squares weighting function for the Element-free Galerkin method which almost fulfills essential boundary conditions", Struct. Eng. Mech., 21(3), 315-332. https://doi.org/10.12989/sem.2005.21.3.315.
- Nagaraj, V.T. and Shanthakumar, P. (1975), "Rotor blade vibration by the Galerkin finite element method", J. Sound Vib., 43(3), 575-577. https://doi.org/10.1016/0022-460X(75)90013-9.
- Panchore, V. and Ganguli, R. (2017), "Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam", Struct. Eng. Mech., 61(6), 765-773. https://doi.org/10.12989/sem.2017.61.6.765.
- Panchore, V., Ganguli, R. and Omkar, S.N. (2015), "Meshless local Petrov-Galerkin method for rotating Euler-Bernoulli beam", Comput. Model. Eng. and Sci., 104(5), 353-373.
- Panchore, V., Ganguli, R. and Omkar, S.N. (2015), "Meshless local Petrov-Galerkin method for rotating Timoshenko beam: A locking-free shape function formulation", Comput. Model. Eng. Sci., 108(4), 215-237.
- Panchore, V., Ganguli, R. and Omkar, S.N. (2017), "Galerkin Method for a rotating Euler-Bernoulli beam", Int. J. Comput. Meth. Eng. Sci. Mech., 19(1), 11-21. https://doi.org/10.1080/15502287.2017.1378772.
- Putter, S. and Manor, H. (1978), "Natural frequencies of radial rotating beams", J. Sound Vib., 56(2), 175-185. https://doi.org/10.1016/S0022-460X(78)80013-3.
- Raju, I.S., Phillips, D.R. and Krishnamurthy, T. (2004), "A radial basis function approach in the meshless local Petrov-Galerkin method for Euler-Bernoulli beam problems'', Comput. Mech., 34(6), 464-474. https://doi.org/10.1007/s00466-004-0591-z.
- Reddy, J.N. (2005), An Introduction to the Finite Element Method, Tata McGraw-Hill, New York, U.S.A.
- Rossit, C.A., Bambill, D.V. and Gilardi, G.J. (2017), "Free vibrations of AFG cantilever tapered beams carrying attached masses", Struct. Eng. Mech., 61(5), 685-691. https://doi.org/10.12989/sem.2017.61.5.685.
- Sageresan, N. and Drathi, R. (2008), "Crack propagation in concrete using meshless method", Comput. Model. Eng. Sci., 32(2),103-112.
- Setoodeh, A. and Rezae, M. (2017), "Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation", Struct. Eng. Mech., 61(2), 209-220. https://doi.org/10.12989/sem.2017.61.2.209.
- Sushma, D. and Ganguli, R. (2012), "A collocation approach for finite element basis functions for Euler-Bernoulli beams undergoing rotations and transverse bending vibration", Int. J. Comput. Meth. Eng. Sci. Mech., 13(4), 290-307. https://doi.org/10.1080/15502287.2012.682194.
- Tan, G., Shan, J., Wu, C. and Wang, W. (2017), "Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems", Struct. Eng. Mech., 63(4), 551-565. https://doi.org/10.12989/sem.2017.63.4.551.
- Vinod, K.G., Gopalakrishnan, S. and Ganguli, R. (2007), "Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements", Int. J. Solid. Struct., 44(18), 5875-5893. https://doi.org/10.1016/j.ijsolstr.2007.02.002.
- Wang, G. and Wereley, N.M. (2004), "Free vibration analysis of rotating blades with uniform tapers", AIAA J., 42(12), 2429-2437. https://doi.org/10.2514/1.4302.
- Wen, P.H., Aliabadi, M.H. and Liu, Y.W. (2008), "Meshless Method for Crack Analysis in Functionally Graded Materials with Enriched Radial Base Functions", Comput. Model. Eng. Sci., 30(3), 133-147.
- Zhang, Y., Yang, X. and Zhang, W. (2020), "Modeling and stability analysis of a flexible rotor based on the Timoshenko beam theory", Acta Mechanica Solida Sinica, 33(5), 281-293. https://doi.org/10.1007/s10338-019-00146-y.