과제정보
The authors would like to thank UFJF (Universidade Federal de Juiz de Fora - Programa de Pos-Graduacao em Modelagem Computacional), CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, PROCAD 88881.068530/2014-0), CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, grants 311576/2018-4-PQ and 304329/2019-3-PQ), FAPEMIG (Fundacao de Amparo a Pesquisa do Estado de Minas Gerais, grants PPM-00106-17 and PPM-00001-18) and Politecnico di Milano.
참고문헌
- Agis, D. and Pozo, F. (2019), "A frequency-based approach for the detection and classification of structural changes using t-SNE", Sensor., 19, 5097. https://doi.org/10.3390/s19235097.
- Alves, V., Meixedo, A., Ribeiro, D., Calcada, R. and Cury, A. (2015), "Evaluation of the performance of different damage indicators in railway bridges", Procedia Eng., 114, 746-753, https://doi.org/10.1016/j.proeng.2015.08.020.
- Amezquita-Sanchez, J.P. and Adeli, H. (2016), "Signal processing techniques for vibration-based health monitoring of smart structures", Arch. Comput. Meth. Eng., 23(1), 1-15. https://doi.org/10.1007/s11831-014-9135-7.
- Anowar, F., Sadaoui, S. and Selim, B. (2021), "Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE)", Comput. Sci. Rev., 40, 100378. https://doi.org/10.1016/j.cosrev.2021.100378.
- Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M. and Inman, D.J. (2021), "A review of vibration-based damage detection in civil structures: From traditional methods to machine learning and deep learning applications", Mech. Syst. Signal Pr., 147, 107077. https://doi.org/10.1016/j.ymssp.2020.107077.
- Azim, M.R. and Gul, M. (2021), "Data-driven damage identification technique for steel truss railroad bridges utilizing principal component analysis of strain response", Struct. Infrastr. Eng., 17(8), 1019-1035. https://doi.org/10.1080/15732479.2020.1785512.
- Azim, M.R., Zhang, H. and Gul, M. (2020), "Damage detection of railway bridges using operational vibration data: theory and experimental verifications", Struct. Monit. Mainten., 7(2), 149-166. https://doi.org/10.12989/smm.2020.7.2.149.
- Baldi, P. and Hornik, K. (1989), "Neural networks and principal component analysis: learning from examples without local minima", Neur. Network., 2(1), 53-58. https://doi.org/10.1016/0893-6080(89)90014-2.
- Bao, Y., Tang, Z., Li, H. and Zhang, Y. (2019), "Computer vision and deep learning-based data anomaly detection method for structural health monitoring", Struct. Hlth. Monit., 18, 401421. https://doi.org/10.1177/1475921718757405.
- Cabboi, A., Gentile, C. and Saisi, A. (2017), "From continuous vibration monitoring to FEM-based damage assessment: Application on a stone-masonry tower", Constr. Build. Mater., 156, 252-265. https://doi.org/10.1016/j.conbuildmat.2017.08.160.
- Carden, E.P. and Fanning, P. (2004), "Vibration based condition monitoring: A review", Struct. Hlth. Monit., 3(4), 355-377. https://doi.org/10.1177/1475921704047500.
- Cardoso, R.A., Cury, A. and Barbosa, F. (2018), "A clustering-based strategy for automated structural modal identification", Struct. Hlth. Monit., 17(2), 201-217. https://doi.org/10.1177/1475921716689239.
- Cardoso, R.A., Cury, A. and Barbosa, F. (2019), "Automated realtime damage detection strategy using raw dynamic measurements", Eng. Struct., 196, 109364. https://doi.org/10.1016/j.engstruct.2019.109364.
- Cardoso, R.A., Cury, A., Barbosa, F. and Gentile, C. (2019), "Unsupervised real-time SHM technique based on novelty indexes", Struct. Control Hlth. Monit., 26, e2364. https://doi.org/10.1002/stc.2364.
- Chang, M., Kim, J.K. and Lee, J. (2019), "Hierarchical neural network for damage detection using modal parameters", Struct. Eng. Mech., 70(4), 457-466. https://doi.org/10.12989/sem.2019.70.4.457.
- Cremona, C. and Santos, J. (2018), "Structural health monitoring as a big-data problem", Struct. Eng. Int., 28, 243254. https://doi.org/10.1080/10168664.2018.1461536.
- Dan, J., Feng, W., Huang, X. and Wang, Y. (2021), "Global bridge damage detection using multi-sensor data based on optimized functional echo state networks", Struct. Hlth. Monit., 20(4), 1924-1937. https://doi.org/10.1177/1475921720948206.
- Das, S., Saha, P. and Patro, S.K. (2016), "Vibration-based damage detection techniques used for health monitoring of structures: a review", J. Civil Struct. Hlth. Monit., 6(3), 477-507. https://doi.org/10.1007/s13349-016-0168-5.
- De Roeck, G., Peeters, B. and Maeck, J. (2000), "Dynamic monitoring of civil engineering structures", Proceedings of IASS-IACM 2000, 4th International Colloquium on Computational Methods for Shell and Spatial Structures, Athens.
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Dig., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Eftekhar Azam, S., Rageh, A. and Linzell, D. (2019), "Damage detection in structural systems utilizing artificial neural networks and proper orthogonal decomposition", Struct. Control Hlth. Monit., 26(2), e2288. https://doi.org/10.1002/stc.2288.
- Esfandiari, A., Nabiyan, M.S. and Rofooei, F.R. (2020), "Structural damage detection using principal component analysis of frequency response function data", Struct. Control Hlth. Monit., 27(7), e2550. https://doi.org/10.1002/stc.2550.
- Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Hlth. Monit., 10(1), 83-129. https://doi.org/10.1177/1475921710365419.
- Finotti, R.P., Barbosa, F.D.S., Cury, A.A. and Pimentel, R.L. (2021), "Numerical and experimental evaluation of structural changes using sparse auto-encoders and SVM applied to dynamic responses", Appl. Sci., 11(24), 11965. https://doi.org/10.3390/app112411965.
- Finotti, R.P., Cury, A.A. and Barbosa, F.S. (2019), "An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements", Lat. Am. J. Solid. Struct., 16(2), e165. https://doi.org/10.1590/1679-78254942.
- Garcia-Macias, E. and Ubertini, F. (2020), "MOVA/MOSS: Two integrated software solutions for comprehensive Structural Health Monitoring of structures", Mech. Syst. Signal Pr., 143, 106830. https://doi.org/10.1016/j.ymssp.2020.106830.
- Gentile, C., Saisi, A. and Cabboi, A. (2015), "Structural identification of a masonry tower based on operational modal analysis", Int. J. Arch. Heritage, 9(2), 98-110. https://doi.org/10.1080/15583058.2014.951792.
- Gillich, G.R., Furdui, H., Wahab, M.A. and Korka, Z.I. (2019), "A robust damage detection method based on multi-modal analysis in variable temperature conditions", Mech. Syst. Signal Pr., 115, 361-379. https://doi.org/10.1016/j.ymssp.2018.05.037.
- Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep Learning, MIT press.
- Gu, J., Gul, M. and Wu, X. (2017), "Damage detection under varying temperature using artificial neural networks", Struct. Control Hlth. Monit., 24(11), e1998. https://doi.org/10.1002/stc.1998.
- Guo, G. and Zhang, N. (2019), "A survey on deep learning based face recognition", Comput. Vis. Image Understand., 189, 102805. https://doi.org/10.1016/j.cviu.2019.102805.
- Hou, R. and Xia, Y. (2020), "Review on the new development of vibration-based damage identification for civil engineering structures: 2010-2019", J. Sound Vib., 491, 115741. https://doi.org/10.1016/j.jsv.2020.115741.
- Kullback, S. and Leibler, R.A. (1951), "On information and sufficiency", Ann. Math. Statist., 22(1), 79-86. https://doi.org/10.1214/aoms/1177729694
- Liu, G., Zhai, Y., Leng, D., Tian, X. and Mu, W. (2017), "Research on structural damage detection of offshore platforms based on grouping modal strain energy", Ocean Eng., 140, 43-49. https://doi.org/10.1016/j.oceaneng.2017.05.021.
- Zhou, G.D. and Yi, T.H. (2014), "A summary review of correlations between temperatures and vibration properties of long-span bridges", Math. Prob. Eng., 2014, Article ID 638209. https://doi.org/10.1155/2014/638209.