DOI QR코드

DOI QR Code

Structural novelty detection based on sparse autoencoders and control charts

  • Finotti, Rafaelle P. (Graduate Program in Computational Modeling, Federal University of Juiz de Fora) ;
  • Gentile, Carmelo (Department of Architecture, Built Environment and Construction Engineering) ;
  • Barbosa, Flavio (Graduate Program in Computational Modeling, Federal University of Juiz de Fora) ;
  • Cury, Alexandre (Graduate Program in Civil Engineering, Federal University of Juiz de Fora)
  • Received : 2021.09.25
  • Accepted : 2022.01.13
  • Published : 2022.03.10

Abstract

The powerful data mapping capability of computational deep learning methods has been recently explored in academic works to develop strategies for structural health monitoring through appropriate characterization of dynamic responses. In many cases, these studies concern laboratory prototypes and finite element models to validate the proposed methodologies. Therefore, the present work aims to investigate the capability of a deep learning algorithm called Sparse Autoencoder (SAE) specifically focused on detecting structural alterations in real-case studies. The idea is to characterize the dynamic responses via SAE models and, subsequently, to detect the onset of abnormal behavior through the Shewhart T control chart, calculated with SAE extracted features. The anomaly detection approach is exemplified using data from the Z24 bridge, a classical benchmark, and data from the continuous monitoring of the San Vittore bell-tower, Italy. In both cases, the influence of temperature is also evaluated. The proposed approach achieved good performance, detecting structural changes even under temperature variations.

Keywords

Acknowledgement

The authors would like to thank UFJF (Universidade Federal de Juiz de Fora - Programa de Pos-Graduacao em Modelagem Computacional), CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, PROCAD 88881.068530/2014-0), CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, grants 311576/2018-4-PQ and 304329/2019-3-PQ), FAPEMIG (Fundacao de Amparo a Pesquisa do Estado de Minas Gerais, grants PPM-00106-17 and PPM-00001-18) and Politecnico di Milano.

References

  1. Agis, D. and Pozo, F. (2019), "A frequency-based approach for the detection and classification of structural changes using t-SNE", Sensor., 19, 5097. https://doi.org/10.3390/s19235097.
  2. Alves, V., Meixedo, A., Ribeiro, D., Calcada, R. and Cury, A. (2015), "Evaluation of the performance of different damage indicators in railway bridges", Procedia Eng., 114, 746-753, https://doi.org/10.1016/j.proeng.2015.08.020.
  3. Amezquita-Sanchez, J.P. and Adeli, H. (2016), "Signal processing techniques for vibration-based health monitoring of smart structures", Arch. Comput. Meth. Eng., 23(1), 1-15. https://doi.org/10.1007/s11831-014-9135-7.
  4. Anowar, F., Sadaoui, S. and Selim, B. (2021), "Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE)", Comput. Sci. Rev., 40, 100378. https://doi.org/10.1016/j.cosrev.2021.100378.
  5. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M. and Inman, D.J. (2021), "A review of vibration-based damage detection in civil structures: From traditional methods to machine learning and deep learning applications", Mech. Syst. Signal Pr., 147, 107077. https://doi.org/10.1016/j.ymssp.2020.107077.
  6. Azim, M.R. and Gul, M. (2021), "Data-driven damage identification technique for steel truss railroad bridges utilizing principal component analysis of strain response", Struct. Infrastr. Eng., 17(8), 1019-1035. https://doi.org/10.1080/15732479.2020.1785512.
  7. Azim, M.R., Zhang, H. and Gul, M. (2020), "Damage detection of railway bridges using operational vibration data: theory and experimental verifications", Struct. Monit. Mainten., 7(2), 149-166. https://doi.org/10.12989/smm.2020.7.2.149.
  8. Baldi, P. and Hornik, K. (1989), "Neural networks and principal component analysis: learning from examples without local minima", Neur. Network., 2(1), 53-58. https://doi.org/10.1016/0893-6080(89)90014-2.
  9. Bao, Y., Tang, Z., Li, H. and Zhang, Y. (2019), "Computer vision and deep learning-based data anomaly detection method for structural health monitoring", Struct. Hlth. Monit., 18, 401421. https://doi.org/10.1177/1475921718757405.
  10. Cabboi, A., Gentile, C. and Saisi, A. (2017), "From continuous vibration monitoring to FEM-based damage assessment: Application on a stone-masonry tower", Constr. Build. Mater., 156, 252-265. https://doi.org/10.1016/j.conbuildmat.2017.08.160.
  11. Carden, E.P. and Fanning, P. (2004), "Vibration based condition monitoring: A review", Struct. Hlth. Monit., 3(4), 355-377. https://doi.org/10.1177/1475921704047500.
  12. Cardoso, R.A., Cury, A. and Barbosa, F. (2018), "A clustering-based strategy for automated structural modal identification", Struct. Hlth. Monit., 17(2), 201-217. https://doi.org/10.1177/1475921716689239.
  13. Cardoso, R.A., Cury, A. and Barbosa, F. (2019), "Automated realtime damage detection strategy using raw dynamic measurements", Eng. Struct., 196, 109364. https://doi.org/10.1016/j.engstruct.2019.109364.
  14. Cardoso, R.A., Cury, A., Barbosa, F. and Gentile, C. (2019), "Unsupervised real-time SHM technique based on novelty indexes", Struct. Control Hlth. Monit., 26, e2364. https://doi.org/10.1002/stc.2364.
  15. Chang, M., Kim, J.K. and Lee, J. (2019), "Hierarchical neural network for damage detection using modal parameters", Struct. Eng. Mech., 70(4), 457-466. https://doi.org/10.12989/sem.2019.70.4.457.
  16. Cremona, C. and Santos, J. (2018), "Structural health monitoring as a big-data problem", Struct. Eng. Int., 28, 243254. https://doi.org/10.1080/10168664.2018.1461536.
  17. Dan, J., Feng, W., Huang, X. and Wang, Y. (2021), "Global bridge damage detection using multi-sensor data based on optimized functional echo state networks", Struct. Hlth. Monit., 20(4), 1924-1937. https://doi.org/10.1177/1475921720948206.
  18. Das, S., Saha, P. and Patro, S.K. (2016), "Vibration-based damage detection techniques used for health monitoring of structures: a review", J. Civil Struct. Hlth. Monit., 6(3), 477-507. https://doi.org/10.1007/s13349-016-0168-5.
  19. De Roeck, G., Peeters, B. and Maeck, J. (2000), "Dynamic monitoring of civil engineering structures", Proceedings of IASS-IACM 2000, 4th International Colloquium on Computational Methods for Shell and Spatial Structures, Athens.
  20. Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Dig., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
  21. Eftekhar Azam, S., Rageh, A. and Linzell, D. (2019), "Damage detection in structural systems utilizing artificial neural networks and proper orthogonal decomposition", Struct. Control Hlth. Monit., 26(2), e2288. https://doi.org/10.1002/stc.2288.
  22. Esfandiari, A., Nabiyan, M.S. and Rofooei, F.R. (2020), "Structural damage detection using principal component analysis of frequency response function data", Struct. Control Hlth. Monit., 27(7), e2550. https://doi.org/10.1002/stc.2550.
  23. Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Hlth. Monit., 10(1), 83-129. https://doi.org/10.1177/1475921710365419.
  24. Finotti, R.P., Barbosa, F.D.S., Cury, A.A. and Pimentel, R.L. (2021), "Numerical and experimental evaluation of structural changes using sparse auto-encoders and SVM applied to dynamic responses", Appl. Sci., 11(24), 11965. https://doi.org/10.3390/app112411965.
  25. Finotti, R.P., Cury, A.A. and Barbosa, F.S. (2019), "An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements", Lat. Am. J. Solid. Struct., 16(2), e165. https://doi.org/10.1590/1679-78254942.
  26. Garcia-Macias, E. and Ubertini, F. (2020), "MOVA/MOSS: Two integrated software solutions for comprehensive Structural Health Monitoring of structures", Mech. Syst. Signal Pr., 143, 106830. https://doi.org/10.1016/j.ymssp.2020.106830.
  27. Gentile, C., Saisi, A. and Cabboi, A. (2015), "Structural identification of a masonry tower based on operational modal analysis", Int. J. Arch. Heritage, 9(2), 98-110. https://doi.org/10.1080/15583058.2014.951792.
  28. Gillich, G.R., Furdui, H., Wahab, M.A. and Korka, Z.I. (2019), "A robust damage detection method based on multi-modal analysis in variable temperature conditions", Mech. Syst. Signal Pr., 115, 361-379. https://doi.org/10.1016/j.ymssp.2018.05.037.
  29. Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep Learning, MIT press.
  30. Gu, J., Gul, M. and Wu, X. (2017), "Damage detection under varying temperature using artificial neural networks", Struct. Control Hlth. Monit., 24(11), e1998. https://doi.org/10.1002/stc.1998.
  31. Guo, G. and Zhang, N. (2019), "A survey on deep learning based face recognition", Comput. Vis. Image Understand., 189, 102805. https://doi.org/10.1016/j.cviu.2019.102805.
  32. Hou, R. and Xia, Y. (2020), "Review on the new development of vibration-based damage identification for civil engineering structures: 2010-2019", J. Sound Vib., 491, 115741. https://doi.org/10.1016/j.jsv.2020.115741.
  33. Kullback, S. and Leibler, R.A. (1951), "On information and sufficiency", Ann. Math. Statist., 22(1), 79-86. https://doi.org/10.1214/aoms/1177729694
  34. Liu, G., Zhai, Y., Leng, D., Tian, X. and Mu, W. (2017), "Research on structural damage detection of offshore platforms based on grouping modal strain energy", Ocean Eng., 140, 43-49. https://doi.org/10.1016/j.oceaneng.2017.05.021.
  35. Zhou, G.D. and Yi, T.H. (2014), "A summary review of correlations between temperatures and vibration properties of long-span bridges", Math. Prob. Eng., 2014, Article ID 638209. https://doi.org/10.1155/2014/638209.