DOI QR코드

DOI QR Code

Optimum design of a sliding mode control for seismic mitigation of structures equipped with active tuned mass dampers

  • Eliasi, Hussein (Department of Electrical and Computer Engineering, University of Birjand) ;
  • Yazdani, Hessam (Department of Civil and Environmental Engineering, Howard University) ;
  • Khatibinia, Mohsen (Department of Civil Engineering, University of Birjand) ;
  • Mahmoudi, Mehdi (Department of Civil Engineering, Khayyam University)
  • Received : 2020.12.18
  • Accepted : 2022.01.03
  • Published : 2022.03.10

Abstract

The active tuned mass damper (ATMD) is an efficient and reliable structural control system for mitigating the dynamic response of structures. The inertial force that an ATMD exerts on a structure to attenuate its otherwise large kinetic energy and undesirable vibrations and displacements is proportional to its excursion. Achieving a balance between the inertial force and excursion requires a control law or feedback mechanism. This study presents a technique for the optimum design of a sliding mode controller (SMC) as the control law for ATMD-equipped structures subjected to earthquakes. The technique includes optimizing an SMC under an artificial earthquake followed by testing its performance under real earthquakes. The SMC of a real 11-story shear building is optimized to demonstrate the technique, and its performance in mitigating the displacements of the building under benchmark near- and far-fault earthquakes is compared against that of a few other techniques (proportional-integral-derivative [PID], linear-quadratic regulator [LQR], and fuzzy logic control [FLC]). Results indicate that the optimum SMC outperforms PID and LQR and exhibits performance comparable to that of FLC in reducing displacements.

Keywords

References

  1. Adhikari, R . and Yamaguchi, H. (1997), "Sliding mode control of buildings with ATMD", Earthq. Eng. Struct. Dyn., 26(4), 409-422. https://doi.org/10.1002/(SICI)1096- 9845(199704)26:4<409::AID-EQE647>3.0.CO;2-0.
  2. Aguirre, N., Ikhouane, F. and Rodellar, J. (2011), "Proportional-plus-integral semiactive control using magnetorheological dampers", J. Sound. Vib., 330(10), 2185-2200. https://doi.org/10.1016/j.jsv.2010.11.027.
  3. Alavinasab, A., Moharrami, H. and Khajepour, A. (2006), "Active control of structures using energy-based LQR method", Comput-Aid. Civil Infrastr. Eng., 21(8), 605-611. https://doi.org/10.1111/j.1467-8667.2006.00460.x.
  4. Albertos, P., Sala, A. and Olivares, M. (1998), "Fuzzy logic controllers. Advantages and drawbacks", VIII international Congress of Automatic Control, Vol. 3, Laxenburg, Austria, September.
  5. Alli, H. and Yakut, O. (2007), "Application of robust fuzzy sliding-mode controller with fuzzy moving sliding surfaces for earthquake-excited structures", Struct. Eng. Mech., 26(5), 517-544. https://doi.org/10.12989/sem.2007.26.5.517.
  6. Ankireddi, S. and Yang, H.T. (1996), "Simple ATMD control methodology for tall buildings subject to wind loads", J. Struct. Eng., 122(1), 83-91. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:1(83).
  7. Baghaei, K., Ghaffarzadeh, H., Hadigheh, A. and Dias-da-Costa, D. (2019), "Chattering-free sliding mode control with a fuzzy model for structural applications", Struct. Eng. Mech., 69(3), 307-315. https://doi.org/10.12989/sem.2019.69.3.307.
  8. Bozer, A. and Ozsariyildiz, S.S. (2018), "Free parameter search of multiple tuned mass dampers by using artificial bee colony algorithm", Struct. Control Hlth. Monit., 25(2), e2066. https://doi.org/10.1002/stc.2066.
  9. Brown, A.S., Ankireddi, S. and Yang, H.T. (1999), "Actuator and sensor placement for multiobjective control of structures", J. Struct. Eng., 125(7), 757-765. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:7(757).
  10. Bryson, A.E. (2018), Applied Optimal Control: Optimization, Estimation and Control, Routledge.
  11. Cao, H., Reinhorn, A.M. and Soong, T.T. (1998), "Design of an active mass damper for a tall TV tower in Nanjing, China", Eng. Struct., 20(3), 134-143. https://doi.org/10.1016/S0141-0296(97)00072-2.
  12. Chang, C.C. and Yang, H.T. (1995), "Control of buildings using active tuned mass dampers", J. Eng. Mech., 121(3), 355-366. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:3(355).
  13. Chen, Sh., Wang, J.Ch., Yao, M. and Kim, Y.B. (2017), "Improved optimal sliding mode control for a non-linear vehicle active suspension system", J. Sound. Vib., 395, 1-25. https://doi.org/10.1016/j.jsv.2017.02.017.
  14. Edwards, C. and Spurgeon, S. (1998), Sliding Mode Control: Theory and Applications, Taylor & Francis, New York.
  15. Elias, S. and Matsagar, V. (2017), "Research developments in vibration control of structures using passive tuned mass dampers", Ann. Rev. Control, 44, 129-156. https://doi.org/10.1016/j.arcontrol.2017.09.015.
  16. Etedali, S. and Mollayi, N. (2018), "Cuckoo search-based least squares support vector machine models for optimum tuning of tuned mass dampers", Int. J. Struct. Stab. Dyn., 18(02), 1850028. https://doi.org/10.1142/S0219455418500281.
  17. Etedali, S., Sohrabi, M.R. and Tavakoli, S. (2013), "Optimal PD/PID control of smart base isolated buildings equipped with piezoelectric friction dampers", Earthq. Eng. Eng. Vib., 12(1), 39-54. https://doi.org/10.1007/s11803-013-0150-8.
  18. Etedali, S., Tavakoli, S. and Sohrabi, M.R. (2016), "Design of a decoupled PID controller via MOCS for seismic control of smart structures", Earthq. Struct., 10(5), 1067-1087. https://doi.org/10.12989/eas.2016.10.5.1067.
  19. Etedali, S., Zamani, A.A. and Tavakoli, S. (2018), "A GBMO-based PIλDμ controller for vibration mitigation of seismic-excited structures", Autom. Constr., 87, 1-12. https://doi.org/10.1016/j.autcon.2017.12.005.
  20. Giaralis, A. and Taflanidis, A.A. (2018), "Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria", Struct. Control. Hlth. Monit., 25(2), e2082. https://doi.org/10.1002/stc.2082.
  21. He, S., Wu, Q.H., Wen, J.Y., Saunders, J.R. and Paton, R.C. (2004), "A particle swarm optimizer with passive congregation", Biosyst., 78(1-3), 135-147. https://doi.org/10.1016/j.biosystems.2004.08.003.
  22. Huang, Y., Deng, Z. and Li, W. (2007), "Sliding mode control based on neural network for the vibration reduction of flexible structures", Struct. Eng. Mech., 26(4), 377-392. https://doi.org/10.12989/sem.2007.26.4.377.
  23. Huang, Z., Hua, X., Chen, Z. and Niu, H. (2019), "Optimal design of TVMD with linear and nonlinear viscous damping for SDOF systems subjected to harmonic excitation", Struct. Control. Heth. Monit., 26(10), e2413. https://doi.org/10.1002/stc.2413.
  24. Hudson, E.J., Reynolds, P. and Nyawako, D.S. (2016), "Fundamental studies of AVC with actuator dynamics", Eds. Allen, M., Mayes, R.L., Rixen, D., Dynamics of Coupled Structures, Volume 4, Springer International Publishing.
  25. Huo, L., Song, G., Li, H. and Grigoriadis, K. (2007), "Robust control design of active structural vibration suppression using an active mass damper", Smart. Mater. Struct., 17(1), 015021. https://doi.org/10.1088/0964-1726/17/01/015021
  26. Ikeda, Y. (2009), "Active and semi-active vibration control of buildings in Japan-Practical applications and verification", Struct. Control. Health. Monit., 16(7-8), 703-723. https://doi.org/10.1002/stc.315.
  27. Kanai K. (1961), "An empirical formula for the spectrum of strong earthquake motions", Bull. Earthq. Res. Institute., 39(1), 85-95.
  28. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks, Vol. IV, Perth, Australia.
  29. Khatibinia, M., Jalalipour, M. and Gharehbaghi, S. (2019), "Shape optimization of U-shaped steel dampers subjected to cyclic loading using an efficient hybrid approach", Eng. Struct., 197, 108874. https://doi.org/10.1016/j.engstruct.2019.02.005.
  30. Khatibinia, M., Mahmoudi, M. and Eliasi, H. (2020), "Optimal sliding mode control for seismic control of buildings equipped with ATMD", Inter. J. Optim. Civil. Eng., 10(1), 1-15.
  31. Lavan, O. (2017), "Multi-objective optimal design of tuned mass dampers", Struct. Control. Health. Monit., 24(11), e2008. ttps://doi.org/10.1002/stc.2008.
  32. Li, Q.S., Liu, D.K., Tang, J., Zhang, N. and Tam, C.M. (2004), "Combinatorial optimal design of number and positions of actuators in actively controlled structures using genetic algorithms", J. Sound. Vib., 270(4-5), 611-624. https://doi.org/10.1016/S0022-460X(03)00130-5.
  33. Lu, Z., Wang, Z., Zhou, Y. and Lu, X. (2018), "Nonlinear dissipative devices in structural vibration control: A review", J. Sound. Vib., 423, 18-49. https://doi.org/10.1016/j.jsv.2018.02.052.
  34. Mongkol, J., Bhartia, B.K. and Fujino, Y. (1996), "On linear-saturation (LS) control of buildings", Earthq. Eng. Structl. Dyn., 25(12), 1353-1371. https://doi.org/10.1002/(SICI)1096-9845(199612)25:12<1353::AID-EQE614>3.0.CO;2-2.
  35. Nishimura, I., Kobori, T., Sakamoto, M., Koshika, N., Sasaki, K. and Ohrui, S. (1992), "Active tuned mass damper", Smart. Mater. Struct., 1(4), 306. https://doi.org/10.1088/0964-1726/1/4/005
  36. Palazzo, B. and Petti, L. (1999), "Optimal structural control in the frequency domain: control in norm H2 and H∞", J. Struct. Control, 6(2), 205-221. https://doi.org/10.1002/stc.4300060202.
  37. Park, S.J., Lee, J., Jung, H.J., Jang, D.D. and Kim, S.D. (2009), "Numerical and experimental investigation of control performance of active mass damper system to high-rise building in use", Wind. Struct., 12(4), 313-332. https://doi.org/10.12989/was.2009.12.4.313.
  38. Phu, D.X., Mien, V., Tu, Ph.H.T., Nguyen, N.Ph. and Choi, S.B. (2020), "A new optimal sliding mode controller with adjustable gains based on Bolza-Meyer criterion for vibration control", J. Sound. Vib., 485, 115542. https://doi.org/10.1016/j.jsv.2020.115542.
  39. Pourzeynali, S., Lavasani, H.H. and Modarayi, A.H. (2007), "Active control of high rise building structures using fuzzy logic and genetic algorithms", Eng. Struct., 29(3), 346-357. https://doi.org/10.1016/j.engstruct.2006.04.015.
  40. Pusadkar, U.S., Chaudhari, S.D., Shendge, P.D. and Phadke, S.B. (2019), "Linear disturbance observer based sliding mode control for active suspension systems with non-ideal actuator", J. Sound. Vib., 442, 428-444. https://doi.org/10.1016/j.jsv.2018.11.003.
  41. Reyes-Salazar, R., Bojorquez, E., Bojorquez, J., Llanes-Tizoc, M.D., Gaxiola-Camacho, G.R. and Valenzuela-Beltran, F. (2021), "Some issues regarding the models of the mass and damping matrices in nonlinear seismic analysis of moment resisting steel frames", Struct., 33, 12-27. https://doi.org/10.1016/j.istruc.2021.04.043.
  42. Ricciardelli, F., Pizzimenti, A.D. and Mattei, M. (2003), "Passive and active mass damper control of the response of tall buildings to wind gustiness", Eng. Struct., 25(9), 1199-1209. https://doi.org/10.1016/S0141-0296(03)00068-3.
  43. Saaed, T.E., Nikolakopoulos, G., Jonasson, J.E. and Hedlund, H. (2015), "A state-of-the-art review of structural control systems", J. Vib. Control., 21(5), 919-937. https://doi.org/10.1177/1077546313478294.
  44. Samali, B. and Al-Dawod, M. (2003), "Performance of a five-storey benchmark model using an active tuned mass damper and a fuzzy controller", Eng. Struct., 25(13), 1597-1610. https://doi.org/10.1016/S0141-0296(03)00132-9.
  45. Shayesteh Bilondi, M.R., Yazdani, H. and Khatibinia, M. (2018), "Seismic energy dissipation-based optimum design of tuned mass dampers", Struct. Multidisc. Optim., 58(6), 2517-2531. https://doi.org/10.1007/s00158-018-2033-0.
  46. Shi, Y. and Eberhart, R. (1998), "A modified particle swarm optimizer", 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), May.
  47. Soto, M.G. and Adeli, H. (2013), "Tuned mass dampers", Arch. Comput. Meth. Eng., 20(4), 419-431. https://doi.org/10.1007/s11831-013-9091-7
  48. Tajimi, H. (1960), "Statistical method of determining the maximum response of a building structure during an earthquake", Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo, Japan.
  49. Utkin, V. (1997), "Variable structure systems with sliding modes", IEEE. Tran. Automat. Control, 22(2), 212-222. https://doi.org/10.1109/TAC.1977.1101446.
  50. Utkin, V. and Lee, H. (2006), "Chattering problem in sliding mode control systems", International Workshop on Variable Structure Systems, Alghero, Sardinia, Italy.
  51. Wang, A.P. and Lin, Y.H. (2007), "Vibration control of a tall building subjected to earthquake excitation", J. Sound. Vib., 299(4-5), 757-773. https://doi.org/10.1016/j.jsv.2006.07.016.
  52. Yang, J.N., Wu, J.C. and Li, Z. (1996), "Control of seismic-excited buildings using active variable stiffness systems", Eng. Struct., 18(8), 589-596. https://doi.org/10.1016/0141-0296(95)00175-1.
  53. Zamani, A.A., Tavakoli, S. and Etedali, S. (2017), "Control of piezoelectric friction dampers in smart base-isolated structures using self-tuning and adaptive fuzzy proportional-derivative controllers", J. Intel. Mater. Syst. Struct., 28(10), 1287-1302. https://doi.org/10.1177/1045389X16667561.
  54. Zare, A.R. and Ahmadizadeh, M. (2018), "Modified sliding mode design of passive viscous fluid control systems for nonlinear structures", Eng. Struct., 162, 245-256. https://doi.org/10.1016/j.engstruct.2018.02.042.
  55. Zhao, B., Lu, X., Wu, M. and Mei, Z. (2000), "Sliding mode control of buildings with base-isolation hybrid protective system", Earthq. Eng. Struct. Dyn., 29(3), 315-326. https://doi.org/10.1002/(SICI)1096-9845(200003)29:3<315::AID-EQE906>3.0.CO;2-A.