References
- Adhikari, R . and Yamaguchi, H. (1997), "Sliding mode control of buildings with ATMD", Earthq. Eng. Struct. Dyn., 26(4), 409-422. https://doi.org/10.1002/(SICI)1096- 9845(199704)26:4<409::AID-EQE647>3.0.CO;2-0.
- Aguirre, N., Ikhouane, F. and Rodellar, J. (2011), "Proportional-plus-integral semiactive control using magnetorheological dampers", J. Sound. Vib., 330(10), 2185-2200. https://doi.org/10.1016/j.jsv.2010.11.027.
- Alavinasab, A., Moharrami, H. and Khajepour, A. (2006), "Active control of structures using energy-based LQR method", Comput-Aid. Civil Infrastr. Eng., 21(8), 605-611. https://doi.org/10.1111/j.1467-8667.2006.00460.x.
- Albertos, P., Sala, A. and Olivares, M. (1998), "Fuzzy logic controllers. Advantages and drawbacks", VIII international Congress of Automatic Control, Vol. 3, Laxenburg, Austria, September.
- Alli, H. and Yakut, O. (2007), "Application of robust fuzzy sliding-mode controller with fuzzy moving sliding surfaces for earthquake-excited structures", Struct. Eng. Mech., 26(5), 517-544. https://doi.org/10.12989/sem.2007.26.5.517.
- Ankireddi, S. and Yang, H.T. (1996), "Simple ATMD control methodology for tall buildings subject to wind loads", J. Struct. Eng., 122(1), 83-91. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:1(83).
- Baghaei, K., Ghaffarzadeh, H., Hadigheh, A. and Dias-da-Costa, D. (2019), "Chattering-free sliding mode control with a fuzzy model for structural applications", Struct. Eng. Mech., 69(3), 307-315. https://doi.org/10.12989/sem.2019.69.3.307.
- Bozer, A. and Ozsariyildiz, S.S. (2018), "Free parameter search of multiple tuned mass dampers by using artificial bee colony algorithm", Struct. Control Hlth. Monit., 25(2), e2066. https://doi.org/10.1002/stc.2066.
- Brown, A.S., Ankireddi, S. and Yang, H.T. (1999), "Actuator and sensor placement for multiobjective control of structures", J. Struct. Eng., 125(7), 757-765. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:7(757).
- Bryson, A.E. (2018), Applied Optimal Control: Optimization, Estimation and Control, Routledge.
- Cao, H., Reinhorn, A.M. and Soong, T.T. (1998), "Design of an active mass damper for a tall TV tower in Nanjing, China", Eng. Struct., 20(3), 134-143. https://doi.org/10.1016/S0141-0296(97)00072-2.
- Chang, C.C. and Yang, H.T. (1995), "Control of buildings using active tuned mass dampers", J. Eng. Mech., 121(3), 355-366. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:3(355).
- Chen, Sh., Wang, J.Ch., Yao, M. and Kim, Y.B. (2017), "Improved optimal sliding mode control for a non-linear vehicle active suspension system", J. Sound. Vib., 395, 1-25. https://doi.org/10.1016/j.jsv.2017.02.017.
- Edwards, C. and Spurgeon, S. (1998), Sliding Mode Control: Theory and Applications, Taylor & Francis, New York.
- Elias, S. and Matsagar, V. (2017), "Research developments in vibration control of structures using passive tuned mass dampers", Ann. Rev. Control, 44, 129-156. https://doi.org/10.1016/j.arcontrol.2017.09.015.
- Etedali, S. and Mollayi, N. (2018), "Cuckoo search-based least squares support vector machine models for optimum tuning of tuned mass dampers", Int. J. Struct. Stab. Dyn., 18(02), 1850028. https://doi.org/10.1142/S0219455418500281.
- Etedali, S., Sohrabi, M.R. and Tavakoli, S. (2013), "Optimal PD/PID control of smart base isolated buildings equipped with piezoelectric friction dampers", Earthq. Eng. Eng. Vib., 12(1), 39-54. https://doi.org/10.1007/s11803-013-0150-8.
- Etedali, S., Tavakoli, S. and Sohrabi, M.R. (2016), "Design of a decoupled PID controller via MOCS for seismic control of smart structures", Earthq. Struct., 10(5), 1067-1087. https://doi.org/10.12989/eas.2016.10.5.1067.
- Etedali, S., Zamani, A.A. and Tavakoli, S. (2018), "A GBMO-based PIλDμ controller for vibration mitigation of seismic-excited structures", Autom. Constr., 87, 1-12. https://doi.org/10.1016/j.autcon.2017.12.005.
- Giaralis, A. and Taflanidis, A.A. (2018), "Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria", Struct. Control. Hlth. Monit., 25(2), e2082. https://doi.org/10.1002/stc.2082.
- He, S., Wu, Q.H., Wen, J.Y., Saunders, J.R. and Paton, R.C. (2004), "A particle swarm optimizer with passive congregation", Biosyst., 78(1-3), 135-147. https://doi.org/10.1016/j.biosystems.2004.08.003.
- Huang, Y., Deng, Z. and Li, W. (2007), "Sliding mode control based on neural network for the vibration reduction of flexible structures", Struct. Eng. Mech., 26(4), 377-392. https://doi.org/10.12989/sem.2007.26.4.377.
- Huang, Z., Hua, X., Chen, Z. and Niu, H. (2019), "Optimal design of TVMD with linear and nonlinear viscous damping for SDOF systems subjected to harmonic excitation", Struct. Control. Heth. Monit., 26(10), e2413. https://doi.org/10.1002/stc.2413.
- Hudson, E.J., Reynolds, P. and Nyawako, D.S. (2016), "Fundamental studies of AVC with actuator dynamics", Eds. Allen, M., Mayes, R.L., Rixen, D., Dynamics of Coupled Structures, Volume 4, Springer International Publishing.
- Huo, L., Song, G., Li, H. and Grigoriadis, K. (2007), "Robust control design of active structural vibration suppression using an active mass damper", Smart. Mater. Struct., 17(1), 015021. https://doi.org/10.1088/0964-1726/17/01/015021
- Ikeda, Y. (2009), "Active and semi-active vibration control of buildings in Japan-Practical applications and verification", Struct. Control. Health. Monit., 16(7-8), 703-723. https://doi.org/10.1002/stc.315.
- Kanai K. (1961), "An empirical formula for the spectrum of strong earthquake motions", Bull. Earthq. Res. Institute., 39(1), 85-95.
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks, Vol. IV, Perth, Australia.
- Khatibinia, M., Jalalipour, M. and Gharehbaghi, S. (2019), "Shape optimization of U-shaped steel dampers subjected to cyclic loading using an efficient hybrid approach", Eng. Struct., 197, 108874. https://doi.org/10.1016/j.engstruct.2019.02.005.
- Khatibinia, M., Mahmoudi, M. and Eliasi, H. (2020), "Optimal sliding mode control for seismic control of buildings equipped with ATMD", Inter. J. Optim. Civil. Eng., 10(1), 1-15.
- Lavan, O. (2017), "Multi-objective optimal design of tuned mass dampers", Struct. Control. Health. Monit., 24(11), e2008. ttps://doi.org/10.1002/stc.2008.
- Li, Q.S., Liu, D.K., Tang, J., Zhang, N. and Tam, C.M. (2004), "Combinatorial optimal design of number and positions of actuators in actively controlled structures using genetic algorithms", J. Sound. Vib., 270(4-5), 611-624. https://doi.org/10.1016/S0022-460X(03)00130-5.
- Lu, Z., Wang, Z., Zhou, Y. and Lu, X. (2018), "Nonlinear dissipative devices in structural vibration control: A review", J. Sound. Vib., 423, 18-49. https://doi.org/10.1016/j.jsv.2018.02.052.
- Mongkol, J., Bhartia, B.K. and Fujino, Y. (1996), "On linear-saturation (LS) control of buildings", Earthq. Eng. Structl. Dyn., 25(12), 1353-1371. https://doi.org/10.1002/(SICI)1096-9845(199612)25:12<1353::AID-EQE614>3.0.CO;2-2.
- Nishimura, I., Kobori, T., Sakamoto, M., Koshika, N., Sasaki, K. and Ohrui, S. (1992), "Active tuned mass damper", Smart. Mater. Struct., 1(4), 306. https://doi.org/10.1088/0964-1726/1/4/005
- Palazzo, B. and Petti, L. (1999), "Optimal structural control in the frequency domain: control in norm H2 and H∞", J. Struct. Control, 6(2), 205-221. https://doi.org/10.1002/stc.4300060202.
- Park, S.J., Lee, J., Jung, H.J., Jang, D.D. and Kim, S.D. (2009), "Numerical and experimental investigation of control performance of active mass damper system to high-rise building in use", Wind. Struct., 12(4), 313-332. https://doi.org/10.12989/was.2009.12.4.313.
- Phu, D.X., Mien, V., Tu, Ph.H.T., Nguyen, N.Ph. and Choi, S.B. (2020), "A new optimal sliding mode controller with adjustable gains based on Bolza-Meyer criterion for vibration control", J. Sound. Vib., 485, 115542. https://doi.org/10.1016/j.jsv.2020.115542.
- Pourzeynali, S., Lavasani, H.H. and Modarayi, A.H. (2007), "Active control of high rise building structures using fuzzy logic and genetic algorithms", Eng. Struct., 29(3), 346-357. https://doi.org/10.1016/j.engstruct.2006.04.015.
- Pusadkar, U.S., Chaudhari, S.D., Shendge, P.D. and Phadke, S.B. (2019), "Linear disturbance observer based sliding mode control for active suspension systems with non-ideal actuator", J. Sound. Vib., 442, 428-444. https://doi.org/10.1016/j.jsv.2018.11.003.
- Reyes-Salazar, R., Bojorquez, E., Bojorquez, J., Llanes-Tizoc, M.D., Gaxiola-Camacho, G.R. and Valenzuela-Beltran, F. (2021), "Some issues regarding the models of the mass and damping matrices in nonlinear seismic analysis of moment resisting steel frames", Struct., 33, 12-27. https://doi.org/10.1016/j.istruc.2021.04.043.
- Ricciardelli, F., Pizzimenti, A.D. and Mattei, M. (2003), "Passive and active mass damper control of the response of tall buildings to wind gustiness", Eng. Struct., 25(9), 1199-1209. https://doi.org/10.1016/S0141-0296(03)00068-3.
- Saaed, T.E., Nikolakopoulos, G., Jonasson, J.E. and Hedlund, H. (2015), "A state-of-the-art review of structural control systems", J. Vib. Control., 21(5), 919-937. https://doi.org/10.1177/1077546313478294.
- Samali, B. and Al-Dawod, M. (2003), "Performance of a five-storey benchmark model using an active tuned mass damper and a fuzzy controller", Eng. Struct., 25(13), 1597-1610. https://doi.org/10.1016/S0141-0296(03)00132-9.
- Shayesteh Bilondi, M.R., Yazdani, H. and Khatibinia, M. (2018), "Seismic energy dissipation-based optimum design of tuned mass dampers", Struct. Multidisc. Optim., 58(6), 2517-2531. https://doi.org/10.1007/s00158-018-2033-0.
- Shi, Y. and Eberhart, R. (1998), "A modified particle swarm optimizer", 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), May.
- Soto, M.G. and Adeli, H. (2013), "Tuned mass dampers", Arch. Comput. Meth. Eng., 20(4), 419-431. https://doi.org/10.1007/s11831-013-9091-7
- Tajimi, H. (1960), "Statistical method of determining the maximum response of a building structure during an earthquake", Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo, Japan.
- Utkin, V. (1997), "Variable structure systems with sliding modes", IEEE. Tran. Automat. Control, 22(2), 212-222. https://doi.org/10.1109/TAC.1977.1101446.
- Utkin, V. and Lee, H. (2006), "Chattering problem in sliding mode control systems", International Workshop on Variable Structure Systems, Alghero, Sardinia, Italy.
- Wang, A.P. and Lin, Y.H. (2007), "Vibration control of a tall building subjected to earthquake excitation", J. Sound. Vib., 299(4-5), 757-773. https://doi.org/10.1016/j.jsv.2006.07.016.
- Yang, J.N., Wu, J.C. and Li, Z. (1996), "Control of seismic-excited buildings using active variable stiffness systems", Eng. Struct., 18(8), 589-596. https://doi.org/10.1016/0141-0296(95)00175-1.
- Zamani, A.A., Tavakoli, S. and Etedali, S. (2017), "Control of piezoelectric friction dampers in smart base-isolated structures using self-tuning and adaptive fuzzy proportional-derivative controllers", J. Intel. Mater. Syst. Struct., 28(10), 1287-1302. https://doi.org/10.1177/1045389X16667561.
- Zare, A.R. and Ahmadizadeh, M. (2018), "Modified sliding mode design of passive viscous fluid control systems for nonlinear structures", Eng. Struct., 162, 245-256. https://doi.org/10.1016/j.engstruct.2018.02.042.
- Zhao, B., Lu, X., Wu, M. and Mei, Z. (2000), "Sliding mode control of buildings with base-isolation hybrid protective system", Earthq. Eng. Struct. Dyn., 29(3), 315-326. https://doi.org/10.1002/(SICI)1096-9845(200003)29:3<315::AID-EQE906>3.0.CO;2-A.