DOI QR코드

DOI QR Code

Prediction of recent earthquake magnitudes of Gyeongju and Pohang using historical earthquake data of the Chosun Dynasty

조선시대 역사지진자료를 이용한 경주와 포항의 최근 지진규모 예측

  • Kim, Jun Cheol (Department of Statistics, Pukyong National University) ;
  • Kwon, Sookhee (Department of Statistics, Pukyong National University) ;
  • Jang, Dae-Heung (Department of Statistics, Pukyong National University) ;
  • Rhee, Kun Woo (Department of History, Pukyong National University) ;
  • Kim, Young-Seog (Department of Earth and Environmental Sciences, Pukyong National University) ;
  • Ha, Il Do (Department of Statistics, Pukyong National University)
  • Received : 2021.10.28
  • Accepted : 2021.11.30
  • Published : 2022.02.28

Abstract

In this paper, we predict the earthquake magnitudes which were recently occurred in Gyeongju and Pohang, using statistical methods based on historical data. For this purpose, we use the five-year block maximum data of 1392~1771 period, which has a relatively high annual density, among the historical earthquake magnitude data of the Chosun Dynasty. Then, we present the prediction and analysis of earthquake magnitudes for the return level over return period in the Chosun Dynasty using the extreme value theory based on the distribution of generalized extreme values (GEV). We use maximum likelihood estimation (MLE) and L-moments estimation for parameters of GEV distribution. In particular, this study also demonstrates via the goodness-of-fit tests that the GEV distribution can be an appropriate analytical model for these historical earthquake magnitude data.

본 논문에서는 최근 경주와 포항에서 심각한 피해를 주며 발생한 지진의 규모를 과거자료에 근거한 통계적 분석방법을 통해 예측하고자 한다. 이를 위해, 조선시대 역사지진 자료중에서 연단위 밀집도가 상대적으로 높은 1392~1771년의 5년 블록 최대 규모 자료를 이용하였다. 이 자료를 기반으로 일반화 극단값(generalized extreme value) 확률분포에 기초한 극단값 이론을 이용하여 조선시대 재현기간별 지진 규모 예측 및 분석을 제시하고자 한다. 일반화 극단값 분포의 모수추정을 위해 최대가능도추정법(maximum likelihood estimation, MLE)과 L-적률추정법(L-moments estimation, LME)을 사용한다. 특히 본 논문에서는 일반화 극단값 분포가 이러한 역사지진 자료에 대한 적절한 분석 모형이 될 수 있음을 적합도 검정(goodness-of-fit test)을 통해 보인다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다 (No. 20201510100020).

References

  1. Anderson TW (1962). On the distribution of the two-sample Cramer-von Mises criterion, The Annals of Mathematical Statistics, 33, 1148-1159. https://doi.org/10.1214/aoms/1177704477
  2. Anderson TW and Darling DA (1952). Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes, The Annals of Mathematical Statistics, 23, 193-212. https://doi.org/10.1214/aoms/1177729437
  3. Bae E, Kim SY, and Kim C (2018). Extreme value theory based earthquake risk modelling and management, The Journal of Risk Management, 29, 1-24.
  4. Coles S, Bawa J, Trenner L, and Dorazio P (2001). An Introduction to Statistical Modeling of Extreme Values, Springer, London.
  5. Fisher RA and Tippett LHC (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. In Mathematical Proceedings of the Cambridge Philosophical Society, 24, 180-190. https://doi.org/10.1017/S0305004100015681
  6. Ha ID, Jang DH, Rhee KW, Lee J, Lee S, Ko N, and Kim J (2020). Prediction of earthquake magnitude for return period using generalized extreme value distribution: Korea, Japan, China and Taiwan, Journal of the Korean Data Information Science Society, 31, 97-108. https://doi.org/10.7465/jkdi.2020.31.1.97
  7. Heo J (2016). Statistical hydrology, Goomiseokuan.
  8. Hosking JRM (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics, Journal of the Royal Statistical Society: Series B (Methodological), 52, 105-124. https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
  9. Jenkinson AF (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological elements, Quarterly Journal of the Royal Meteorological Society, 81, 158-171. https://doi.org/10.1002/qj.49708134804
  10. Korea Meteorological Administration (KMA) (2012). Historical earthquake records in Korea(2-1904 Year), KMA.
  11. Nadarajah S and Choi D (2007). Maximum daily rainfall in South Korea, Journal of Earth System Science, 116, 311-320. https://doi.org/10.1007/s12040-007-0028-0
  12. Nourani V, Asghari P, and Sharghi E (2021). Artificial intelligence based ensemble modeling of wastewater treatment plant using jittered data, Journal of Cleaner Production, 291, 125772.
  13. Pisarenko VF, Sornette D, and Rodkin MV (2010). Distribution of maximum earthquake magnitudes in future time intervals: Application to the seismicity of Japan(1923-2007), Earth, Planets and Space, 62, 567. https://doi.org/10.5047/eps.2010.06.003
  14. Ryu S, Eom E, Kwon T, and Yoon S (2016). The estimation of CO concentration in Daegu-Gyeongbuk area using GEV distribution, Journal of the Korean Data and Information Science Society, 27, 1001-1012. https://doi.org/10.7465/jkdi.2016.27.4.1001
  15. Smirnov N (1939). Sur les ecarts de la courbe de la distribution empirique, Receuil Mathemathique (Matematiceskii Sbornik), 6, 3-26.
  16. Zhang GP (2007). A neural network ensemble method with jittered training data for time series forecasting, Information Sciences, 177, 5329-5346. https://doi.org/10.1016/j.ins.2007.06.015