Acknowledgement
이 논문은 한국연구재단의 지원을 받아 수행된 기초연구 사업임 (NRF-2019R1F1A1057104).
References
- Agarap AF (2018). Deep Learning Using Rectified Linear Units (relu), arXiv preprint arXiv:1803.08375.
- Andersen TG, Bollerslev T, Diebold FX, and Labys P (2003). Modeling and forecasting realized volatility, Econometrica, 71, 579-625. https://doi.org/10.1111/1468-0262.00418
- Baek C and Park M (2021). Sparse vector heterogeneous autoregressive modeling for realized volatility, Journal of the Korean Statistical Society, 50, 495-510. https://doi.org/10.1007/s42952-020-00090-5
- Bai J and Ng S (2008). Large Dimensional Factor Analysis, Now Publishers Inc.
- Cattell RB (1966). The scree test for the number of factors, Multivariate behavioral research, 1, 245-276. https://doi.org/10.1207/s15327906mbr0102_10
- Corsi F (2009). A simple approximate long-memory model of realized volatility, Journal of Financial Econometrics, 7, 174-196. https://doi.org/10.1093/jjfinec/nbp001
- Gu S, Kelly B, and Xiu D (2021). Autoencoder asset pricing models, Journal of Econometrics, 222, 429-450. https://doi.org/10.1016/j.jeconom.2020.07.009
- Kim D and Baek C (2020). Factor-augmented HAR model improves realized volatility forecasting, Applied Economics Letters, 27, 1002-1009. https://doi.org/10.1080/13504851.2019.1657554
- Kingma DP and Ba J (2014). Adam: A Method for Stochastic Optimization, arXiv preprint arXiv:1412.6980.
- Kramer MA (1991). Nonlinear principal component analysis using autoassociative neural networks, AIChE Journal, 37, 233-243. https://doi.org/10.1002/aic.690370209
- Srivastava N, Hinton G, Krizhevsky A, Sutskever I, and Salakhutdinov R (2014). Dropout: a simple way to prevent neural networks from overfitting, Journal of Machine Learning Research, 15, 1929-1958.