Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 연구 기초연구실 (No. 2021R1A4A5028907) 지원과 기본연구 (No. 2021R1F1A1054968) 지원을 받아 수행한 연구 과제입니다.
References
- Babiloni F, Mattia D, Babiloni C, et al. (2004). Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle, Magnetic Resonance Imaging, 22, 1471-1476. https://doi.org/10.1016/j.mri.2004.10.007
- Bassett DS and Sporns O (2017). Network neuroscience, Nature Neuroscience, 20, 353-364. https://doi.org/10.1038/nn.4502
- Bianconi G (2019). Multilayer Networks, Oxford, London.
- Bolstad A, Veen BDV, and Nowak R (2011). Causal network inference via group sparse regularization, IEEE Transactions on Signal Processing, 59, 2628-2641. https://doi.org/10.1109/TSP.2011.2129515
- Bowman FD, Zhang L, Derado G, and Chen S (2012). Determining functional connectivity using fMRI data with diffusion-based anatomical weighting, NeuroImage, 62, 1769-1779. https://doi.org/10.1016/j.neuroimage.2012.05.032
- Brillinger DR (2001). Time Series: Data Analysis and Theory, SIAM, New York.
- Brookes MJ, Hale JR, Zumer JM et al. (2011a). Measuring functional connectivity using MEG: methodology and comparison with fcMRI, NeuroImage, 56, 1082-1104. https://doi.org/10.1016/j.neuroimage.2011.02.054
- Brookes MJ, Woolrich M, Luckhoo H et al. (2011b). Investigating the electrophysiological basis of resting state networks using magnetoencephalography. In Proceedings of the National Academy of Sciences of the United States of America, 16.
- Brookes MJ, Tewarie PK, Hunt BAE, et al. (2016). A multi-layer network approach to MEG connectivity analysis, Neuroimage, 132, 425-438. https://doi.org/10.1016/j.neuroimage.2016.02.045
- Bulmore E (2016). Fundamentals of Brain Network Analysis, Academic Press, London.
- Cabral J, Luckhoo H, Woolrich M, et al. (2014). Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations, NeuroImage, 90, 423-435. https://doi.org/10.1016/j.neuroimage.2013.11.047
- Cassidy B, Rae C, and Solo V (2014), Brain activity: Connectivity, sparsity, and mutual information, IEEE Transactions on Medical Imaging, 34, 846-860. https://doi.org/10.1109/TMI.2014.2358681
- Chella F, Marzetti L, Stenroos M, Parkkonen L, Ilmoniemi RJ, Romani GL, and Pizzella V (2019). The impact of improved MEG-MRI co-registration on MEG connectivity analysis, Neuroimage, 197, 354-367. https://doi.org/10.1016/j.neuroimage.2019.04.061
- Chen SY, He ZP, Han XY, et al. (2019). How big data and high-performance computing drive brain science, Genomics Proteomics & Bioinformatics, 17.
- Cribben I, Haraldsdottir R, Atlas LY, Wager TD, and Lindquist MA (2012). Dynamic connectivity regression: Determining state-related changes in brain connectivity, NeuroImage, 61, 907-920. https://doi.org/10.1016/j.neuroimage.2012.03.070
- Dash D, Ferrari P, and Wang J (2020). Decoding imagined and spoken phrases from non-invasive neural (MEG) signals, Frontiers in Neuroscience, 07.
- Dharmaprani D, Nguyen HK, Lewis TW, DeLosAngeles D, Willoughby JO, and Pope KJ (2016). A comparison of independent component analysis algorithms and measures to discriminate between EEG and artifact components, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 825-828.
- Florin E and Baillet S (2015). The brain's resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations, NeuroImage, 111, 26-35. https://doi.org/10.1016/j.neuroimage.2015.01.054
- Foley E, Cerquiglini A, Cavanna A, Nakubulwa MA, Furlong PL, Witton C, and Seri S (2014). Magnetoencephalography in the study of epilepsy and consciousness, Epilepsy and Behavior 30, 38-42. https://doi.org/10.1016/j.yebeh.2013.09.005
- Fornito A, Zalesky A, and Bullmore E (2016). Fundamentals of brain network analysis, Elsevier Academic Press.
- Fornito A, Zalesky A, Pantelis C, and Bullmore ET (2012). Schizophrenia, neuroimaging and connectomics, NeuroImage, 62, 2296-2314. https://doi.org/10.1016/j.neuroimage.2011.12.090
- Friston KJ, Frith CD, Liddle PF, and Frackowiak RSJ (1993). Functional connectivity: the principal-component analysis of large (PET) data sets, Journal of Cerebral Blood Flow & Metabolism 13 5-14. https://doi.org/10.1038/jcbfm.1993.4
- Friston KJ (2005). Models of brain function in neuroimaging, Annual Review of Psychology, 56, 57-87 https://doi.org/10.1146/annurev.psych.56.091103.070311
- Friston KJ (2011). Functional and effecive connectivity: a Review, Brain Connectivity, 1, 13-36. https://doi.org/10.1089/brain.2011.0008
- Georopoulos AP and Karageorgiou E (2008). Neurostatistics: Applications, challenges and expectations, Statistics in Medicine, 27, 407-417. https://doi.org/10.1002/sim.3137
- Golmohammadi M, Torbati AH, Diego SL, Obeid I, and Picone J (2019). Automatic analysis of EEGs using big data and hybrid deep learning architectures, Frontiers in Human Neuroscience, 13.
- Greenblatt RE, Pflieger ME, Ossadtchi AE (2012). Connectivity measures applied to human brain electrophysiological data, Journal of Neuroscience Methods, 207, 1-16. https://doi.org/10.1016/j.jneumeth.2012.02.025
- Gupta D (2011). Space-time network connectivity and cortical activations preceding spike wave discharges in human absence epilepsy: a MEG study, Medical & Biological Engineering & Computing , 49, 555-565. https://doi.org/10.1007/s11517-011-0778-3
- Hastie T, Tibshirani R, and Wainwright M (2015). Statistical Learning with Sparsity: The Lasso and Generalization, CRC Press, New York.
- Ikeda S and Toyama K (2000). Independent component analysis for noisy data-MEG data analysis, Neural Networks, 13, 1063-1074. https://doi.org/10.1016/S0893-6080(00)00071-X
- Iwasaki M, Nakasato N, Shamoto H, et al. (2002). Surgical implications of neuromagnetic spike localization in temporal lobe epilepsy, Epilepsia, 43, 415-424. https://doi.org/10.1046/j.1528-1157.2002.30801.x
- Jirsa VK (2004). Connectivity and dynamics of neural information processing, Neuroinformatics, 4, 183-204. https://doi.org/10.1385/NI:2:2:183
- Kim J, Jeong W, and Chung CK (2021). Dynamic functional connectivity change-point detection with random matrix theory inference, Frontiers in Neuroscience, https://doi.org/10.3389/fnins.2021.565029
- Kloppel S, Stonnington CM, Barnes J, et al. (2008). Accuracy of dementia diagnosis: A direct comparison between radiologists and a computerized method, Brain, 131, 2969-2974. https://doi.org/10.1093/brain/awn239
- Kolaczyk ED (2009). Statistical Analysis of Network Data, Springer, New York.
- Kostas D, Pang EW, and Rudzicz F (2019). Machine learning for MEG during speech tasks, Scientific Reports, 9.
- Lee H, Kang H, Chung MK, Kim B, and Lee DS (2012). Persistent brain network homology from the perspective of dendrogram, IEEE Trans Med Imaging, 31, 2267-2277. https://doi.org/10.1109/TMI.2012.2219590
- Li K, Guo L, Niea J, Li G, and Liub T (2009). Review of methods for functional brain connectivity detection using fMRI, Computerized Medical Imaging and Graphics, 33, 131-139. https://doi.org/10.1016/j.compmedimag.2008.10.011
- Lindquist MA, Xu Y, Nebel MB, and Caffo BS (2014). Evaluating dynamic bivariate correlations in resting-state fMRI:A comparison study and a new approach, NeuroImage, 101, 531-546. https://doi.org/10.1016/j.neuroimage.2014.06.052
- Lopez-Sanz D, Serrano N, and Maestu F (2018). The Role of magnetoencephalography in the early stages of alzheimer's disease, Frontiers in Neuroscience, 12.
- Luckhoo H, Hale JR, Stokes MG, Nobre AC, and Morris PG (2012). Inferring task-related networks using independent component analysis in magnetoencephalography, NeuroImage, 62, 530-541. https://doi.org/10.1016/j.neuroimage.2012.04.046
- Mandal PK, Banerjee A, Tripathi M, and Sharma A (2018). A comprehensive review of MEG studies for brain functionality in healthy aging and alzheimer's disease(AD), Frontiers in Computational Neuroscience, 12.
- Maestu F, Garcia-Segura J, Ortiz T, et al. (2005). Evidence of biochemical and biomagnetic interactions in Alzheimer's disease: an MEG and MR spectroscopy study, Dementia and Geriatric Cognitive Disorders, 20, 145-152. https://doi.org/10.1159/000087062
- Monti MM (2011). Statistical analysis of fMRI time-series: a critical review of the GLM approach, Frontiers in Human Neuroscience, 18.
- Muthukumaraswamy SD (2013). High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations, Frontiers in Human Neuroscience, 7.
- Niso G, Rogers C, Moreau JT, et al. (2016). OMEGA: The Open MEG Archive, NeuroImage, 124, 1182-1187. https://doi.org/10.1016/j.neuroimage.2015.04.028
- Pantazis D and Adler A (2021). MEG source localization via deep learning, Sensors (Basel), 21. https://doi.org/10.3390/s21010054
- Pourahmadi M (2013). High-dimensional covariance estimation, Wiley, New York.
- Rajesh KK, Donna LM, Lauren EL, Mark RP, Heather MW, Rishi D, and Christi PH (2011). Probing the brain in autism using fMRI and diffusion tensor imaging, Journal of Visualized Experiments, 55, 3178.
- Ramgopal S, Thome-Souza S, Jackson M, et al. (2014). Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy, Epilepsy Behavior, 37, 291-307. https://doi.org/10.1016/j.yebeh.2014.06.023
- Robinson LF, Atlas LY, Wager TD (2015). Dynamic functional connectivity using state-based dynamic community structure: method and application to opioid analgesia, Neuroimage, 108, 274-291. https://doi.org/10.1016/j.neuroimage.2014.12.034
- Rubinov M and Sporns O (2010). Complex network measures of brain connectivity:Uses and interpretations. NeuroImage, 52, 1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
- Sekihara K and Nagarajan SS (2010). Adaptive Spatial Filters for Electro-magnetic Brain Imaging, Springer-Verlag, Berlin.
- Shappell H, Caffo BS, Pekar JJ, and Lindquist MA (2019). Improved state change estimation in dynamic functional connectivity using hidden semi-Markov models, NeuroImage, 191, 243-257 https://doi.org/10.1016/j.neuroimage.2019.02.013
- Solo V, Poline JB, Lindquist MA, Simpson SL, Bowman DF, Chung MK, and Cassidy B (2018). Connectivity in fMRI: Blind Spots and Breakthroughs, IEEE Transactions on Medical Imaging, 37, 1537-1550. https://doi.org/10.1109/TMI.2018.2831261
- Sui J, Adali T, Yu Q, and Calhouna VD (2012). A review of multivariate methods for multimodal fusion of brain imaging data, Journal of Neuroscience Methods 15, 68-81.
- Sun FT, Miller LM, and Esposito MD (2004). Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data, NeuroImage, 21, 647-658. https://doi.org/10.1016/j.neuroimage.2003.09.056
- Taylor JR, Williams N, Cusack R, et al. (2017). The Cambridge Centre for ageing and neuroscience (Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data from across-sectional adult lifespan sample, Neuroimage, 144, 262-269. https://doi.org/10.1016/j.neuroimage.2015.09.018
- Tovar-Spinoza ZS, Ochi A, Rutka JT, Go C, and Otsubo H (2008). The role of magnetoencephalography in epilepsy surgery, Neurosurgical Focus, 25.
- Vaiana M and Muldoon SF (2018). Multilayer brain networks, Journal of Nonlinear Science, 30, 1-23. https://doi.org/10.1007/s00332-019-09566-z
- Vidaurre D, Smith SM, and Woolrich MW (2017). Brain network dynamics are hierarchically organized in time, PNAS 114, 48, https://doi.org/10.1073/pnas.1705120114
- Warnick R, Guindani M, Erhardt E, Allen E, Calhoun V, and Vannucci M (2018). A bayesian approach for estimating dynamic functional network connectivity in fmri data, Journal of the American Statistical Association, 113, 134-151. https://doi.org/10.1080/01621459.2017.1379404
- Whittaker J (1990). Graphical Models in Applied Multivariate Statistics, Wiley, New York.
- Wu W, Nagarajan S, and Chen Z (2016). Bayesian Machine Learning: EEGMEG signal processing measurements, IEEE Signal Processing Magazine, 33, 14-36.
- Zalesky A, Fornito A, and Bulmore E (2012). On the use of correlation as a measure of network connectivity, NeuroImage, 60, 2096-2106. https://doi.org/10.1016/j.neuroimage.2012.02.001
- Zhang J and Su L (2015). Temporal autocorrelation-based beamforming with MEG neuroimaging Data, Journal of the American Statistical Association, 110, 1375-1388. https://doi.org/10.1080/01621459.2015.1054488
- Zhang S, Cao C, Quinn A, et al. (2021). Dynamic analysis on simultaneous iEEG-MEG data via hidden Markov model, NeuroImage, 233, 117923. https://doi.org/10.1016/j.neuroimage.2021.117923
- Zubarev I, Zetter R, Halme HL, Parkkonen LL (2019). Adaptive neural network classifier for decoding MEG signals, Neuroimage, 197, 425-434. https://doi.org/10.1016/j.neuroimage.2019.04.068