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ON SPIRALLIKE FUNCTIONS RELATED TO BOUNDED

RADIUS ROTATION

Asena Çetinkaya∗ and Hakan Mete Taştan

Dedicated to the memory of Professor Yaşar POLATOĞLU

Abstract. In the present paper, we prove the growth and distortion the-

orems for the spirallike functions class Sk(λ) related to boundary radius
rotation, and by using the distortion result, we get an estimate for the

Gaussian curvature of a minimal surface lifted by a harmonic function

whose analytic part belongs to the class Sk(λ). Moreover, we determine
and draw the minimal surface corresponding to the harmonic Koebe func-

tion.

1. Introduction

A complex-valued function f which is harmonic in a simply connected do-
main D ⊂ C has the canonical representation f = h+ g, where h the analytic
and g the co-analytic part of f in D with g(z0) = 0 for some prescribed point
z0 ∈ D. According to a theorem by Lewy [10], f is locally univalent if and only

if its Jacobian Jf (z) = |fz|2 − |fz|2 = |h′(z)|2 − |g′(z)|2 does not vanish. The
function f is said to be sense-preserving if its Jacobian is positive. In this case,
then h

′
(z) 6= 0 and the analytic function w(z) = g′(z)/h′(z), called the second

dilatation of f , has the property |w(z)| < 1 for all z ∈ D. Throughout this
paper we will assume that f is locally univalent, sense -preserving harmonic
mapping, and D = D ⊂ C, with z0 = 0, where D := {z : |z| < 1} is the open
unit disc on the complex plane.

Let H denote the family of continuous complex-valued sense-preserving
harmonic functions f = h + g in the open unit disc D. Clunie and Sheil-
Small [3] introduced the class SH which is univalent and a subclass of H with
h(0) = g(0) = h′(0)−1 = 0, and also introduced its subclass SH0 with g′(0) = 0.
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The function f = h+ g in D is determined by the power series expansions

h(z) =

∞∑
n=0

anz
n, g(z) =

∞∑
n=1

bnz
n (z ∈ D)

where an ∈ C (n = 0, 1, ...) and bn ∈ C (n = 1, 2...). Thus if f ∈ SH, we have
a0 = 0, a1 = 1. Moreover, we also have g′(0) = b1 with |b1| = a (0 ≤ a < 1).

Let Ω be the family of functions φ which are analytic and satisfying the
conditions φ(0) = 0, and |φ(z)| < 1 for every z ∈ D; and let Ω(a), where
0 ≤ a < 1, be the class of functions w which are analytic in D and satisfy
w(0) = a and |w(z)| < 1 for all z ∈ D. We let Ω∪ be the union of all classes
Ω(a) where a ranges over 0 ≤ a < 1. In view of the relation w = g′/h′ with
|b1| = a, if w ∈ Ω∪ then we have

(1)
|a− r|
1− ar

≤ |w(z)| ≤ a+ r

1 + ar

for all z ∈ D.

In 1971, Pinchuk [12] introduced and studied the classes Pk and Rk. Here,
Pk denotes the class of analytic functions p(z) = 1 +p1z+p2z

2 + · · · in D with
p(0) = 1 and having the representation

p(z) =
1

2

∫ π

−π

1 + ze−it

1− ze−it
dµ(t),

where µ is a real-valued function of bounded variation on [−π, π] such that for
k ≥ 2 ∫ π

−π
dµ(t) = 2 and

∫ π

−π
|dµ(t)| ≤ k.

Clearly, P2 ≡ P where P is the class of analytic functions with positive real
part. Then, p ∈ Pk if and only if there exists p1, p2 ∈ P such that

p(z) =

(
k

4
+

1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z), (z ∈ D).

The class Rk, defined by Pinchuk [12], consists of those functions h which
satisfy the condition∫ π

−π

∣∣∣∣Re

(
reiθ

h′(reiθ)

h(reiθ)

)∣∣∣∣ dθ ≤ kπ, (k ≥ 2, 0 < r < 1, z = reiθ).

Geometrically, the condition is that the total variation of angle between radius
vector h(reiθ) makes with positive real axis is bounded by kπ. Thus Rk is
the class of functions of bounded radius rotation bounded by kπ. Pinchuk [12]
showed that

h ∈ Rk if and only if z
h′(z)

h(z)
∈ Pk.
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Denote by Sk(λ) the class of spirallike functions related to bounded radius
rotation is defined by

(2) Sk(λ) =

{
h ∈ A : eiλz

h′(z)

h(z)
= cosλp(z)+i sinλ, p ∈ Pk, k ≥ 2, |λ| < π

2

}
,

where A is the class of functions of the form

(3) h(z) = z +

∞∑
n=2

anz
n,

which are analytic in D. It is noted that for λ = 0, we get Sk(0) ≡ Rk and
for k = 2, we have the class S2(λ) ≡ Sλ, which was introduced and studied
by Spacek in 1932 (see [14]). In fact, for k = 2 and λ = 0, we get the class
S2(0) ≡ S∗ of all starlike functions in D; for further details, one may refer to [6].

In this paper, we introduce harmonic mappings for which the analytic part
is the spirallike function with bounded radius rotation.

Definition 1.1. Denote by SHk (λ) the subclass of SH consisting of all har-
monic mappings of the form f = h+ g for which h ∈ Sk(λ) with normalization
h(0) = g(0) = h′(0)− 1 = 0 and g′(0) = b1 with |b1| = a.

Minimal surfaces are most commonly known as those which have the min-
imum area amongst all other surfaces spanning a given closed curve in R3.
Geometrically, the definition of a minimal surface is that the mean curvature
H is zero at every point of the surface. If locally one can write the minimal
surface in R3 as (x, y,Φ(x, y)), then the minimal surface equation H = 0 is
equivalent to

(1 + Φ2
y)Φxx − 2ΦxΦyΦxy + (1 + Φ2

x)Φyy = 0.

There exists a choice of isothermal parameters (u, v) ∈ Ω ⊂ R2 so that the
surface X(u, v) = (x(u, v), y(u, v),Φ(u, v)) ∈ R3 satisfying the minimal surface
equation is given by

E = |Xu|2 = |Xv|2 = G > 0, F =< Xu, Xv >= 0, ∆(u,v)X = 0

where ∆ denotes the Laplacian operator. The general solution of such an equa-
tion is called the local Weierstrass-Enneper representation [4].

A harmonic mapping f = h+g can be lifted locally to a regular minimal sur-
face given by conformal (or isothermal) parameters if and only if its dilatation
is the square of an analytic function w(z) = q2(z) for some analytic function
q with |q(z)| < 1. Equivalently, the requirement is that any zero of w be of
even order, unless w ≡ 0 on its domain, so that there is no loss of generality
in supposing that z ranges over the unit disc D, because any other isothermal
representation can be precomposed with a conformal map from the unit disc D
whose existence is guaranteed by the Riemann mapping theorem. For such a
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harmonic mapping f = u+iv, the minimal surface has the Weierstrass-Enneper
representation with parameters (u, v, t) given by

u = Re

{∫ z

0

ϕ1(ζ)dζ

}
= Re{f(z)},

v = Re

{∫ z

0

ϕ2(ζ)dζ

}
= Im{f(z)},

t = Re

{∫ z

0

ϕ3(ζ)dζ

}
for z ∈ D with

ϕ1 = h′ + g′ = p(1 + q2) =
∂u

∂z
,(4)

ϕ2 = −i(h′ − g′) = −ip(1− q2) =
∂v

∂z
,(5)

ϕ3 =
√
−4w(h′)2 = −2ipq =

∂t

∂z
.(6)

By using (4)∼ (6), we get

(7) w =
g′

h′
= q2, h′ = p and g′ = pq2 .

The metric of the surface has the form ds = λ|dz|, where λ = λ(z) > 0. Here,
the function λ takes the form

(8) λ = |h′|+ |g′| = |h′|(1 + |w|) = |p|(1 + |q|2) .

A classical theorem of differential geometry says that if a regular surface is
represented by conformal parameters ( or isothermal parameters) so that its
metric has the form ds = λ|dz| for some positive function λ, then the Gaussian
curvature of the surface is K = −λ−2∆(log λ). Here, if we use (8) in this
formula, we obtain

(9) K = − 4|q′|2

|p|2(1 + |q|2)4
.

Next, using (7) in (9), we get an another expression of K as follows:

(10) K = − |w′|2

|h′g′|(1 + |w|)4
.

For more details, we refer to the book by Duren [7].

2. Main Results

Lemma 2.1. [13] If p is an element of Pk, then∣∣∣∣p(z)− 1 + r2

1− r2

∣∣∣∣ ≤ kr

1− r2
.
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Lemma 2.2. If h of the form (3) is an element of Sk(λ), then

(11)

∣∣∣∣z h′(z)h(z)
− 1 + r2e−2iλ

1− r2

∣∣∣∣ ≤ kr cosλ

1− r2
.

Proof. Since h ∈ Sk(λ), from (2) we get

p(z) =
1

cosλ

(
eiλz

h′(z)

h(z)
− i sinλ

)
.

Using this relation in Lemma 2.1 and simplifying, we obtain (11).

We next give the growth and distortion results for the class Sk(λ).

Theorem 2.3. If h ∈ Sk(λ), then for |z| = r < 1, we have
a) Growth theorem:

(12)
r

(1− r2)cos2 λ

(
1− r
1 + r

) k
2 cosλ

≤ |h(z)| ≤ r

(1− r2)cos2 λ

(
1 + r

1− r

) k
2 cosλ

.

b) Distortion theorem:

(13) Γ(λ, k,−r) ≤ |h′(z)| ≤ Γ(λ, k, r),

where

(14) Γ(λ, k, r) =
1 + r2 cos 2λ+ kr cosλ

(1− r2)1+cos2 λ

(
1 + r

1− r

) k
2 cosλ

.

These results are sharp.

Proof. (a): Since h ∈ Sk(λ), in view of Lemma 2.2 and applying some
routine calculations, we obtain
(15)

1− (k cosλ)r + (cos 2λ)r2

1− r2
≤ Re

(
z
h′(z)

h(z)

)
≤ 1 + (k cosλ)r + (cos 2λ)r2

1− r2
.

On the other hand, we have

Re

(
z
h′(z)

h(z)

)
= r

∂

∂r
log |h(z)|.

Therefore, (15) can be written in the form
(16)

1− (k cosλ)r + (cos 2λ)r2

r(1− r)(1 + r)
≤ ∂

∂r
log |h(z)| ≤ 1 + (k cosλ)r + (cos 2λ)r2

r(1− r)(1 + r)
.

Integrating both sides of (16) from 0 to r, we get (12). This completes the
proof of the part (a).

(b): In order to prove the distortion theorem, we will apply Lemma 2.2. Hence,
(11) may be written in the form

(17)
|1 + r2e−2iλ| − kr cosλ

1− r2
≤
∣∣∣∣z h′(z)h(z)

∣∣∣∣ ≤ |1 + r2e−2iλ|+ kr cosλ

1− r2
.
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By using the right sides of (12) and (17), we obtain

|h′(z)| ≤ 1 + r2 cos 2λ+ +kr cosλ

(1− r2)1+cos2 λ

(
1 + r

1− r

) k
2 cosλ

.

Similarly, by using the left sides of (12) and (17), we get

|h′(z)| ≥ 1 + r2 cos 2λ− kr cosλ

(1− r2)1+cos2 λ

(
1− r
1 + r

) k
2 cosλ

.

Combining both of the above inequalities, we get (13) where Γ(λ, k, r) is given
by (14). This completes the proof of the part (b).

The results given in Theorem 2.3 are sharp because extremal function is

h(z) = z

(
(1 + z)

k
2−1

(1− z) k2+1

)e−iλ cosλ

= z + ke−iλ cosλz2 +

(
1

2
k2e−2iλ cos2 λ+ e−iλ cosλ

)
z3 + ... .

Such functions are belong to the class Sk(λ). It is worth to note that for k = 2,
this function reduces to the λ−Spiral Koebe function

h(z) =
z

(1− z)2e−iλ cosλ
∈ Sλ,

and for λ = 0, k = 2, the function reduces to the well-known Koebe function.
Putting k = 2 in (12), we obtain the following result.

Remark 2.4. [11] If h ∈ Sλ, then the growth theorem is

r

(
(1− r)1−cosλ

(1 + r)1+cosλ

)cosλ

≤ |h(z)| ≤ r
(

(1 + r)1−cosλ

(1− r)1+cosλ

)cosλ

.

This result is sharp for the λ−Spiral Koebe function.

Setting λ = 0, k = 2 in (12) and (13), respectively, we obtain the following
known growth and distortion theorems.

Remark 2.5. [9] If h ∈ S∗, then

r

(1 + r)2
≤ |h(z)| ≤ r

(1− r)2
,

1− r
(1 + r)3

≤ |h′(z)| ≤ 1 + r

(1− r)3
.

These results are sharp for the Koebe function.

The rest of this section includes several results for the harmonic function
class SHk (λ). Hence, before move forward, we need to present the following
lemma which was proved by Taştan and Polatoğlu in [15].
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Lemma 2.6. If w ∈ Ω∪, then

(18)
(1− a)(1− r)

1 + ar
≤ (1− |w(z)|) ≤ 1− ar − |a− r|

1− ar
,

(19)
1− ar + |a− r|

1− ar
≤ 1 + |w(z)| ≤ (1 + a)(1 + r)

1 + ar
,

(20)
(1 + a)(1− r)

1− ar
≤ |1 + w(z)| ≤ (1 + a)(1 + r)

1 + ar
,

and

(21)
(1− a)(1− r)

1 + ar
≤ |1− w(z)| ≤ (1− a)(1 + r)

1− ar
.

Theorem 2.7. Let f = h+ g be an element of SHk (λ), then

(22)
|a− r|Γ(λ, k,−r)

1− ar
≤ |g′(z)| ≤ (a+ r)Γ(λ, k, r)

1 + ar
,

and

(23)

∫ r

0

|a− ρ|Γ(λ, k,−ρ)

1− aρ
dρ ≤ |g(z)| ≤

∫ r

0

(a+ ρ)Γ(λ, k, ρ)

1 + aρ
dρ.

Proof. Since the second dilatation is w(z) = g′(z)/h′(z), then by using (1)
and (13) we get the assertion (22).

If g is univalent and m′(r) ≤ |g′(z)| ≤ M ′(r) (0 ≤ |z| = r < 1), then∫ r
0
m′(r)dr ≤ |g(z)| ≤

∫ r
0
M ′(r)dr. Applying this together with the assertion

(22), we get (23).

Corollary 2.8. Let f = h+ g be an element of SHk (λ), then

(Γ(λ, k,−r))2
(

1−
(
|a− r|
1− ar

)2)
≤ Jf (z) ≤ (Γ(λ, k, r))2

(
1−

(
a+ r

1 + ar

)2)
.

Proof. Since Jacobian is

Jf (z) = |h′(z)|2 − |g
′
(z)|2 = |h′(z)|2(1− |w(z)|2),

then using (1) and (13) we get the result.

Corollary 2.9. Let f = h+ g be an element of SHk (λ), then∫ r

0

Γ(λ, k,−ρ)

(
1− |a− ρ|

1− aρ

)
dρ ≤ |f(z)| ≤

∫ r

0

Γ(λ, k, ρ)

(
1 +

a+ ρ

1 + aρ

)
dρ.

Proof. Since total differential of f is

(|h′(z)| − |g′(z)|)|dz| ≤ |df(z)| ≤ (|h′(z)|+ |g′(z)|)|dz| ⇒

|h′(z)|(1− |w(z)|)|dz| ≤ |df(z)| ≤ |h′(z)|(1 + |w(z)|)|dz|,
then setting (1) and (13) into the last inequality, and integrating both sides,
we get the result.
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By (4)∼(6) and (18)∼(21), we prove the following result.

Theorem 2.10. Let the functions ϕm (m = 1, 2, 3) be the Weierstrass-
Enneper parameters of a regular minimal surface f = h+ g ∈ SHk (λ). Then

(24)
(1 + a)(1− r)Γ(λ, k,−r)

1− ar
≤ |ϕ1| ≤

(1 + a)(1 + r)Γ(λ, k, r)

1 + ar
,

(25)
(1− a)(1− r)Γ(λ, k,−r)

1 + ar
≤ |ϕ2| ≤

(1− a)(1 + r)Γ(λ, k, r)

1− ar
,

and

(26)
4|a− r|(Γ(λ, k,−r))2

1− ar
≤ |ϕ3|2 ≤

4(a+ r)(Γ(λ, k, r))2

1 + ar
.

Next, we give a growth theorem for the Gaussian curvature K.

Theorem 2.11. Let K be the Gaussian curvature of a minimal surface
with isothermal parameters lifted by a harmonic function f = h+ g ∈ SHk (λ).
Then we have

(27)

|K| ≥ |w′|2(1 + ar)5

(Γ(λ, k, r))2(a+ r)(1 + a)4(1 + r)4

|K| ≤ (1− ar − |a− r|)2(1− ar)3

(Γ(λ, k,−r))2|a− r|(1 + ar)2(1 + a)2(1− r)6
.

Proof. By using (13), (20) and (22), we have
(28)

|ω′|2(1 + ar)5

(Γ(λ, k, r))2(a+ r)(1 + a)4(1 + r)4
≤ |K| ≤ |ω′|2(1− ar)5

(Γ(λ, k,−r))2|a− r|(1 + a)4(1− r)4

from (10). Here, if we use the Schwarz-Pick’s Lemma for the function

w(z)− w(0)

1− w(0)w(z)
,

we obtain

(29) |w′|2 ≤ (1− |w(z)|2)2

(1− r2)2
.

Using the inequality (29) in the inequality (28), we arrive

|w′|2(1 + ar)5

(Γ(λ, k, r))2(a+ r)(1 + a)4(1 + r)4
≤ |K| ≤ (1− |w(z)|2)2(1− ar)5

(Γ(λ, k,−r))2|a− r|(1 + a)4(1− r)6(1 + r)2
.

Applying the inequalities (18) and (19) in the last expression, we get (27).

From Theorem 2.11, we deduce that:
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Corollary 2.12. Let f = h+g ∈ SHk (λ) lift a minimal surface with isother-
mal parameters. Then we have

(1 + ar)5

(Γ(λ, k, r))2(a+ r)(1 + r)4
≤ (1− ar)5

(Γ(λ, k,−r))2|a− r|(1− r)4
.

In a special case, we have the following.

Corollary 2.13. Let f = h+g ∈ SH lift a minimal surface with isothermal
parameters. Then we have

(1− r)2(1 + ar)5

(1 + r)6(a+ r)(1 + r)4
≤ (1 + r)2(1− ar)5

(1− r)6|a− r|(1− r)4
.

3. Minimal Surface For Harmonic Koebe Function

We will examine minimal surface for the harmonic Koebe function which
gives Weierstrass representation connects the harmonic function theory to min-
imal surface.

Example 3.1. For k = 2 and λ = 0, the class SHk (λ) reduces to the
harmonic function class SH. For such functions, sharp function is the harmonic
Koebe function [5, p.15] given by

(30) f(z) = h(z) + g(z) =
z − 1

2z
2 + 1

6z
3

(1− z)3
+

( 1
2z

2 + 1
6z

3

(1− z)3

)
.

The function f maps D conformally onto complex plane except the real slit
(−∞,−1/6]. The harmonic Koebe function is generated via shearing technique

h(z)− g(z) =
z

(1− z)2

with the dilatation w(z) = z and is univalent. Harmonic functions of the form
f = h+ g can be written

f(z) = Re
(
h(z) + g(z)

)
+ i Im

(
h(z)− g(z)

)
,

thus the function f , equivalently, can also be written by

f(z) = Re

(
z + 1

3z
3

(1− z)3

)
+ i Im

(
z

(1− z)2

)
.

Here, derivatives of the functions h and g given by (30) are

h′(z) =
z + 1

(z − 1)4
and g′(z) =

z(z + 1)

(z − 1)4
,

then

p = h′(z) =
z + 1

(z − 1)4
,
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and

q2 =
g′(z)

h′(z)
= z ⇒ q =

√
z.

Thus using p and q into (4)∼(6), we get

ϕ1 =
(z + 1)2

(z − 1)4
,

ϕ2 = −i (z + 1)(1− z)
(z − 1)4

,

ϕ3 = −2i

√
z(z + 1)

(z − 1)4
.

By direct computations, we observe that (ϕ1)2 + (ϕ2)2 + (ϕ3)2 = 0 and
|ϕ1|2 + |ϕ2|2 + |ϕ3|2 > 0.

Hence, by [Theorem 1 [7], p. 166] the triple(
Re

∫ z

0

ϕ1(ξ)dξ, Re

∫ z

0

ϕ2(ξ)dξ, Re

∫ z

0

ϕ3(ξ)dξ

)
=

(
Re
( z + 1

3z
3

(1− z)3
)
, Im

( z

(1− z)2
)
, Im

( 4z3/2

3(1− z)3
))

defines a regular minimal surface with isothermal parameters.

Figure 1. Minimal surface
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