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WARPED PRODUCT SKEW SEMI-INVARIANT

SUBMANIFOLDS OF LOCALLY GOLDEN RIEMANNIAN

MANIFOLDS

Mobin Ahmad∗ and Mohammad Aamir Qayyoom

Abstract. In this paper, we define and study warped product skew semi-

invariant submanifolds of a locally golden Riemannian manifold. We in-
vestigate a necessary and sufficient condition for a skew semi-invariant

submanifold of a locally golden Riemannian manifold to be a locally

warped product. An equality between warping function and the squared
normed second fundamental form of such submanifolds is established.

We also construct an example of warped product skew semi-invariant

submanifolds.

1. Introduction

Semi-invariant submanifolds were defined by A. Bejancu and N. Papaghuic
[10] as an analogous to that of CR-submanifolds in an almost complex manifolds
[9]. Semi-invariant submanifolds are generalization of holomorphic (invariant)
and totally real (anti-invariant) submanifolds. A semi-invariant submanifold is
called proper if it is neither holomorphic nor totally real submanifold.

In holomorphic submanifolds, the tangent space of the submanifolds is in-
variant under the action of the almost contact structure. On the other hand,
in totally real submanifolds, the tangent space is anti-invariant, that is, it is
mapped into the normal space. The geometry of semi-invariant submanifolds
has been studied in several papers (see, [1], [2], [3], [4], [19], [34]).

Another generalization of holomorphic and totally real submanifolds is a
slant submanifold. Slant submanifold were defined by Chen [15]. Since, then
such submanifolds were investigated by many geometers ([8], [13], [16], [27]). If
a slant submanifold is neither holomorphic nor totally real submanifolds, then
it is said to be proper. We also notice that a proper semi-invariant submanifolds
is never a slant submanifold. N. Papaghuic [29] defined semi-slant submanifolds
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as generalization of slant and CR-submanifolds. Carriazo [14] introduced bi-
slant submanifolds as generalization of semi-slant submanifolds. Sahin [33]
called these submanifolds as hemi-slant submanifolds.

Ronsse [31] introduced the notion of skew CR-submanifolds of Kaehler man-
ifolds. Such submanifolds are generalization of bi-slant submanifolds. In fact,
invariant, anti-invariant, CR, slant, semi-slant and hemi-slant submanifold are
particular cases of skew CR-submanifolds. Skew CR-submanifolds are studied
in [28]. We observe that skew CR-submanifolds in Kaehler manifolds corre-
sponds to skew semi-invariant subamifolds in locally product golden Riemann-
ian manifolds. Skew semi-invariant submanifolds are studied in [7], [35], [38].

Bishop and O’ Neill [11] defined warped product. Let M1 and M2 be two
Riemannian manifolds with Riemannian metric g1 and g2, respectively. Let f
be a positive differentiable function on M1. The warped product M = M1×fM2

of M1 and M2 is the Riemannian manifold M , where

g = g1 + f2g2.

Thus, if U ∈ TpM, then

‖U‖2 = ‖dπ1(U)‖2 + (f2oπ1)‖dπ2‖2,

where π1 and π2 are the canonical projections of M1 ×M2 onto M1 and M2,
respectively. The function f is called the warping function of the warped
product. If f is constant then M is said to be trivial. It is well known that
M1 is totally geodesic and M2 is totally umbilical [12]. If U is a vector field on
M1 and V is a vector field on M2, then it follows from [11, Lemma 7.3] that
we have

(1) ∇UV = ∇V U = U(lnf)V,

where ∇ is the Levi-Civita connection on M1 ×f M2. Warped product sub-
manifolds of several kind of structures have been studied in [26], [32], [36],
[37].

Recently, C. E. Hretcanu and M. Crasmereanu [17] introduced and studied
a golden Riemannian manifold by using the golden ratio. They also stud-
ied invariant submanifolds [18] in Riemannian manifold with golden structure.
Gezer. A. et al [22] discussed the integrability conditions of golden Riemannian
manifolds. Some properties of golden Riemannian manifolds have been studied
in [5], [21], [23], [30]. M. Ahmad and M. A. Qayyoom [6], Hretcanu C.E. [25]
studied submanifolds in Riemannian manifolds with golden structure. Semi-
invariant submanifolds of golden Riemannian manifolds have been studied in
[20], [24].

In this paper, we define and study warped product skew semi-invariant
submanifolds of a locally golden Riemannian manifold.
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2. Definition and preliminaries

Let M be an n-dimensional manifold endowed with a tensor field J of type
(1, 1) such that

(2) J2 = J + I,

where I is the identity transformation on Γ(TM). Then the structure J is
called a golden structure. We say that the metric g is J-compatible if

(3) g(JX, Y ) = g(X, JY )

for all X,Y vector fields on Γ(TM), and (M, g, J) is called golden Riemannian
manifold. If we substitute JX into X in (3), then from (2) we have

(4) g(JX, JY ) = g(JX, Y ) + g(X,Y ).

for any X,Y ∈ Γ(TM).

Proposition 2.1 ([17]). (i) The eigenvalues of a golden structure J are
the golden ratio φ and 1− φ.

(ii) A golden structure J is an isomorphism on the tangent space TxM of
the manifold M for every x ∈M .

(iii) It follows that J is invertible and its inverse Ĵ = J−1 satisfies

φ̂2 = −φ̂+ 1.

3. Skew semi-invariant submanifold

A submanifold M of a golden Riemannian manifold M is called a skew
semi-invariant submanifold if there exist an integer k and constant functions
αi, 1 ≤ i ≤ k, defined on M with values in (0, 1) such that

(i) each αi, 1 ≤ i ≤ k, is a distinct eigenvalue of P 2 with

TpM = D0
p

⊕
D1
p

⊕
Dα1
p

⊕
· · ·

⊕
Dαk
p

for p ∈M , and
(ii) the dimensions of D0

p, D
1
p and D1

k, 1 ≤ i ≤ k, are independent of p ∈M.

Remark 3.1. The above definition implies D0
p, D

1
p, and Dαi

p , 1 ≤ i ≤ k,

defined P invariant, mutually orthogonal distribution which we denote by D0
p,

D1
p, and Dαi

p , 1 ≤ i ≤ k, respectively. The tangent bundle of M has the
following decomposition

TM = D0
⊕

D1
⊕

Dα1

⊕
· · ·

⊕
Dαk .

If k = 0, then M is a semi-invariant submanifold. Also, if k = 0 and D0
p(D

1
p)

is trivial, then M is an invariant (anti-invariant) submanifold of M.
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We denote by ∇ the Levi-Civita connection on M with respect to g. Let
M be a Riemannian manifold isometrically immersed in M and let g be the
Riemannian metric induced on M for p ∈ M and tangent vector Xp ∈ TpM .
Then we write

(5) JXp = TXp +NXp,

where TXp ∈ TpM is tangent to M and NXp ∈ T⊥p M is normal to M.
For any two vectors Xp, Yp ∈ TpM, we have

g(JXp, Yp) = g(TXp, Yp),

which implies that

g(JXp, Yp) = g(Xp, TYp).

So, T and T 2 are all symmetric operators on the tangent space TpM. Assume
that α(p) is the eigenvalue of T 2 at p ∈ M . Since T 2 is a composition of an
isometry and a projection, we have α(p) ∈ [0, 1].

For each p ∈ M, we set Dα
p = ker(T 2 − α(p)I), where I is the identity

transformation on TpM, and α(p) is an eigenvalue of T 2 at p ∈M. Obviously,
we have

D0
p = kerT, D1

p = kerN.

D1
p is the maximal J invariant subspace of TpM and D0

p is the maximal J
anti-invariant subspace of TpM.

If α1(p), . . . , αk(p) are all eigenvalues of T 2 at p, then TpM can be decom-
posed as the direct sum of the mutually orthogonal eigenspaces, that is

TpM = Dα1
p

⊕
Dα2
p

⊕
· · ·

⊕
Dαk
p .

For N ∈ T⊥M, we write

(6) JN = tN + wN,

where tN ∈ TM, and fN ∈ T⊥M.
If M is a submanifold in a golden Riemannian manifold (M, g, J), then it

follows from [26] that for any X ∈ Γ(TM) we get

(7) (i) T 2X = TX +X − tNX (ii) NX = NTX + wNX,

and for any V ∈ Γ(T⊥M),

(8) (i) w2V = wV + V −NtV (ii) tT = TtV + twV.

We denote by ∇ the induced connection in M. Then we have formulas by
Gauss and Weingarten

(9) ∇XY = ∇XY + h(X,Y ),

(10) ∇XN = −ANX +∇⊥XN
for all vectors X,Y ∈ TM and N ∈ T⊥M . Also, we have

(11) g(h(X,Y ), N) = g(ANX,Y ).
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If (M, g, J) is a golden Riemannian manifold and J is parallel with respect to
Levi-Civita connection ∇ on M (i.e. ∇J = 0), then (M, g, J) is called a locally
golden Riemannian manifold.

Definition 3.2. A submanifold M of a locally golden Riemannian manifold
M is called a skew semi-invariant submanifold of order 1 if M is a skew semi-
invariant submanifold with k = 1.

In this case, we have

TM = D⊥
⊕

DT
⊕

Dθ,

where Dθ = Dα1 and α1 is constant. A skew semi-invariant submanifold of
order 1 is proper if D⊥ 6= 0 and DT 6= 0.

A slant submanifold M of a locally golden Riemannian manifold M is char-
acterized by

(12) T 2X = α(T + I)

such that α ∈ [0, 1], where X ∈ TM . Moreover, if θ is the slant angle of M,
then we have α = cos2 θ.

Lemma 3.3. Let M be a proper skew semi-invariant submanifold of a
locally golden Riemannian manifold M. Then we have

(13) g(J(∇VW ), X) + g(∇VW,X) = −g(AJWV, JX),

(14) g(∇V TZ,X) + g(∇V Z,X) = csc2 θ[g(ANZV, JX)− g(ANTZV,X)],

(15) g(J(∇ZV ), X) + g(∇ZV,X) = −g(AJV Z, JX).

Proof. For V,W ∈ D⊥, Z ∈ Dθ and X ∈ DT

g(∇JW, JX) = g(∇V JW + h(V, JW ), JX),

g(∇JW, JX) = g(∇V JW, JX) + g(h(V, JW ), JX),

(16) g(∇JW, JX) = g(J(∇VW ), JX).

Using (4) and (10), we have

g(−AJWV +∇⊥V JW, JX) = g(J(∇VW ), X) + g(∇VW,X),

g(J(∇VW ), X) + g(∇VW,X) = g(−AJWV, JX),

which is (13).
Now,

g(∇V JZ, JX) = g(∇V JZ + h(V, JZ), JX),

g(∇V JZ, JX) = g(J(∇V Z), JX).

Using (4), we get

g(∇V JZ, JX) = g(J(∇V Z), X) + g(∇V Z,X).
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Using (5), we have

g(J(∇V Z), X) + g(∇V Z,X) = g(∇V (TZ +NZ), JX),

g(J(∇V Z), X) + g(∇V Z,X) = g(∇V TZ, JX) + g(∇VNZ, JX),

g(J(∇V Z), X) + g(∇V Z,X) = g(∇V JTZ,X) + g(∇VNZ, JX),

g(J(∇V Z), X)+g(∇V Z,X) = g(∇V T 2Z,X)+g(∇VNTZ,X)+g(∇VQZ, JX).

Using (10), we have

g(J(∇V Z), X) + g(∇V Z,X)

= g(∇V T 2Z,X) + g(∇VNTZ,X)− g(ANZV, JX) + g(∇⊥VNZ, JX).

Using (12), (9), and (10), we get

g((∇V JZ), X) + g(∇V Z,X)

= αg(∇V TZ,X) + αg(∇V Z,X)− g(ANTZV,X) + g(ANZV, JX).

Using (5), we have

g((∇V TZ), X) + g(∇V Z,X)

= αg(∇V TZ,X) + αg(∇V Z,X)− g(ANTZV,X) + g(ANZV, JX),

(1− cos2 θ)g((∇V TZ), X) + g(∇V Z,X) = −g(ANTZV,X) + g(ANZV, JX),

Since α = cos2 θ, we have

g((∇V TZ), X) + g(∇V Z,X) = csc2 θ(g(ANZV, JX)− g(ANTZV,X))

which is (14).
Using (4) and (16), we get

g(J(∇ZV,X) + g(∇ZV,X) = g(∇ZJV, JX).

Using (10) in above equation we can obtain (15).

Lemma 3.4. Let M be a proper skew semi-invariant submanifold of a
locally golden Riemannian manifold M . Then we have

(17) g(∇UTZ,X) + g(∇UZ,X) = − csc2[g(ANTZU,X) + g(ANTU, JX),

(18) g(∇XY, TZ) + g(∇XY, Z) = csc2[g(h(X,Y ), NTZ) + g(h(X, JY ), NZ)],

(19) g(AJVX, JY ) = 0.

Proof. For V,W ∈ D⊥, Z ∈ Dθ and X ∈ DT , by using (4), (5), and (16),
we get

g(J(∇UZ), X) + g(∇UZ,X) = g(∇JTZ,X) + g(∇UNZ, JX).

Using (10) and (5), we obtain

g((∇UTZ), X)+g(∇UZ,X) = g(∇UT 2Z,X)+g(∇UNTZ,X)−g(ANZU, JX).
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Using (9), (10), and (12), we get

g((∇UTZ), X) + g(∇UZ,X)

= αg(∇UTZ,X) + αg(∇UZ,X)− g(ANTZU,X)− g(ANTU, JX).

Thus we get

g((∇UTZ), X) + g(∇UZ,X) = − csc2[g(ANTZU,X) + g(ANTU, JX)],

which is (17).
Using (5), (9), and (16), we can obtain

g(J(∇XY ), Z) + g(∇XY, Z) = g(∇XY, JTZ) + g(h(X,JY ), NZ).

Using (5), (9), and (12), we get

g((∇XY ), TZ) + g(∇XY,Z)

= αg(∇XY, TZ) + αg(∇XY, Z) + g(h(X,Y ), NTZ)

+ g(h(X, JY ), NZ).

Since α = cos2 θ, we have

g((∇XY ), TZ) + g(∇XY, Z) = csc2[g(h(X,Y ), NTZ) + g(h(X, JY ), NZ)],

which is (18).
From (16) and (9), we get

g(J(∇XY ), V ) + g(∇XY, V ) = g(J(∇XY ), JV ) + g(h(X,JY ), JV ).

Using (4) and (11) together with the above equation, we obtain (19).

Lemma 3.5. Let M be a proper skew semi-invariant submanifold of a
golden Riemannian manifold M. Then we have

g(∇UZ, V ) + g(J(∇UZ), V ) = sec2 θ[g(AJV U, TZ)−
g(ANZU, V ) + g(ANTZU, V )],(20)

g(∇XV, TZ) + g(∇XV,Z) = sec2 θ[−g(AJVX,TZ) +

g(ANZX,V )− g(ANTZX,V )].(21)

Proof. For any U,Z ∈ Dθ and V ∈ D⊥

g(J(∇UZ), JV ) = g(∇UJZ, JV ).

Using (4), (5), and (9), we obtain

g(J(∇UZ), V ) + g(∇UZ, V ) = g(h(U, TZ), JV ) + g(∇UNZ, JV ).

From (11) and (6), we get

g(J(∇UZ), V ) + g(∇UZ, V )

= g(AJV U, TZ) + g(∇U tNZ, V ) + g(∇UwNZ, V ).
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Using (7), (8), and (12), we obtain

g(J(∇UZ), V ) + g(∇UZ, V ) = g(AJV U, TZ) + sin2 θg(∇U (T + I)Z, V )

+g(∇UNZ, V )− g(∇UNTZ, V ).

Using (5), (9), and (10) together with the above equation, we get

g(∇UZ, V ) + g(T (∇UZ), V )

= sec2 θ[g(AJV U, TZ)− g(ANZU, V ) + g(ANTZU, V )],

which is (20).
For any X ∈ DT , Z ∈ Dθ, and V ∈ Dθ, we get

g(∇XJV, JZ) = g(J(∇XV ), Z) + g(∇XV,Z).

From (5), (9) and (6), we get

g(∇XV, TZ) + g(∇XV,Z) = −g(AJVX,TZ) + g(h(X,V ), tNZ + wNZ).

By using (7), (8), and (11), we can obtain

g(∇XV, TZ) + g(∇XV,Z)

= sec2 θ[−g(AJVX,TZ) + g(ANZX,V )− g(ANTZX,V )],

which is (21).

4. Warped product skew semi-invariant submanifolds of a locally
golden Riemannian manifold

We consider a warped product submanifold of type M = M1 ×f MT in a

locally golden Riemannian manifold M, where M1 is a hemi-slant submanifold
and MT is an invariant submanifold. Then it is clear that M is a proper skew
semi-invariant submanifold of M. Thus, by definition of hemi-slant submanifold
and skew semi-invariant submanifold, we have

(22) TM = Dθ
⊕

D⊥
⊕

DT .

In particular, if Dθ = 0, then M is a warped product semi-invariant submani-
fold. If DT = 0, then M is a warped product semi-slant submanifold.

Since M1 is a hemi-slant submanifold, then normal bundle of T⊥M1 of M1

is decomposed as

T⊥M1 = J(D⊥)
⊕

N(Dθ)
⊕

µ.

Thus, we have

T⊥M = J(D⊥)
⊕

N(Dθ)
⊕

µ.

Since DT is an invariant distribution, where µ is the orthogonal complementary
distribution of J(D⊥)

⊕
N(Dθ) in T⊥M, it is an invariant subbundle of T⊥M

with respect of J.
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Proposition 4.1. Let M = M1 ×f MT be a (Dθ, DT )-mixed totally geo-
desic proper skew semi-invariant submanifold with integrable distribution D⊥

of a locally golden Riemannian manifold M. Then M is a locally warped prod-
uct submanifold if

(23) AJV JX = −V (lnf)(TX −X),

(24) g(ANTZX,Y ) + g(ANZX,JZ) = sin2θX(lnf)[g(Y,Z) + g(Y, TZ)].

Proof. Suppose that M = M1 ×f MT is a (Dθ, DT )-mixed totally geodesic
warped product proper skew semi-invariant submanifold with integrable distri-
bution DT of a locally golden Riemannian manifold M.

Since M is a (Dθ, DT )− mixed totally geodesic, then h(Z, JX) = 0. From
(13) we get g(AJWZ, JX) = 0. Similarly, g(h(Z, JX), JV ) = 0, then from (15)
we get g(AJV Z, JX) = 0 for any V,W ∈ D⊥, Z ∈ Dθ and X ∈ DT . Since A is
self adjoint, then g(Z,AJV JX) = 0 and g(W,AJV JX) = 0. Hence AJV JX
has no component in TM1.

Using (4), (9), and (10), we obtain

g(AJV JX, Y ) = −g(J(∇Y V )X)− g(∇Y V,X).

Using (5) and (1), we get

AJV JX = −V ′(ln f)(TX −X),

which is (23).
Since M is (Dθ, DT )− mixed totally geodesic for any Z ∈ Dθ and X ∈ DT ,

we have
g(ANTZX,Z) = g(h(X,Z), NTZ).

Since h(X,Z) = 0, we have g(ANTZX,Z) = 0. Hence ANTZX has no compo-
nent in Dθ.

Using (1) and (21), we get

g(V (lnf)X,TZ) + g(V (lnf)X,Z)

= sec2θ[−g(h(X,TZ), JV ) + g(ANZX,V )− g(ANTZX,V ))].

Since M is (Dθ, DT )-mixed geodesic, we have

g(ANZX,V )− g(ANTZX,V ) = 0,

g(ANZX −ANTZX,V ) = 0.

Thus ANZX and ANTZX have no component in D⊥. From (22), we can obtain
ANTZX ∈ DT and ANZX ∈ DT for X,Y ∈ DT and Z ∈ Dθ.

From (18) and (11), we obtain

g(ANTZX,Y ) + g(ANZX, JZ) = sin2 θ[g(∇XY, TZ) + g(∇XY,Z)].

Using (1), we get

g(ANTZX,Y ) + g(ANZX, JZ) = sin2 θX(lnf)[g(Y, Z) + g(Y, TZ)],

which is (24).
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Lemma 4.2. Let M = M1 ×f MT be a warped product proper skew semi-
invariant submanifold of a locally golden Riemannian manifold. Then we have

(25) g(h(X,V ), JW ) = 0,

(26) g(h(X,V ), NZ) = 0.

Proof. For any V,W ∈ D⊥ and X ∈ DT , by using (9) we get

g(h(X,V ), JW ) = g(∇VX, JW ),

g(h(X,V ), JW ) = g(∇V JX,W ),

g(h(X,V ), JW ) = g(V (lnf)JX,W ),

g(h(X,V ), JW ) = 0,

which is (25).
Similarly,

g(h(X,V ), NZ) = g(∇VX,NZ),

g(h(X,V ), NZ) = V (lnf)[g(JX,Z)− g(∇VX,TZ)],

g(h(X,V ), NZ) = 0,

which is (26).

Lemma 4.3. Let M = M1 ×f MT be a warped product proper skew semi-
invariant submanifold M of a locally golden Riemannian manifold. Then

(27) g(h(X, JY ), JV ) = −V (lnf)[g(JY,X) + g(Y,X)].

Proof. From (9) and (4), we get

g(h(X, JY ), JV ) = g(∇XJY, JV ),

g(h(X,JY ), JV ) = g(∇XJY, V ) + g(∇XV, Y ),

g(h(X, JY ), JV ) = −g(∇XV, JY )− g(∇XV, Y ),

g(h(X, JY ), JV ) = −V (lnf)[g(JY,X) + g(Y,X)],

which is (27).

Theorem 4.4. Let M = M1 ×f MT be a (p + q + r)-dimensional warped
product proper skew semi-invariant of a (2p+2q+r)-dimensional locally golden
Riemannian manifold M. Then we have the following statements:

(1) The squared norm of the second fundamental form of M satisfies

(28) ‖h‖2 ≥ r{2‖∇⊥(lnf)‖2 + 2 cos2 θ‖∇θ(lnf)‖2},

where r = dim(MT ), and ∇⊥(lnf) and ∇θ(lnf) are gradients of (lnf)
on D⊥ and Dθ, respectively.

(2) Assume that the equality sign holds identically. Then M1 is a totally
geodesic submanifold of M and M is a mixed totally geodesic. Moreover,
MT can never be a minimal submanifold of M.
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Proof. Let

{e1, . . . , er, e1, . . . , ep, ẽ1, . . . , ẽq, e∗1, . . . , e∗p, . . . , e′1, . . . , e′q}

be an orthonormal frame of a locally golden Riemannian manifold M such
that {e1, . . . , er} is an orthonormal basis of DT , {e1, . . . , ep} is an orthonormal
basis of Dθ, {ẽ1, . . . , ẽq} is an orthonormal basis of D⊥, {e∗1 = Ne1, . . . , e

∗
p =

Nep} is an orthonormal basis of NDθ, and {e′1 = J(ẽ1), . . . , e′q = J(ẽq)} is an

orthonormal basis of JD⊥.
Since

TM = Dθ
⊕

D⊥
⊕

DT ,

the squared norm of the second fundamental form h can be decomposed as

‖h‖2 = ‖h(DT , DT )‖2 + ‖h(Dθ, Dθ)‖2 + ‖h(D⊥, D⊥)‖2 + 2‖h(DT , D⊥)‖2+

‖h(DT , Dθ)‖2 + 2‖h(D⊥, Dθ)‖2.
Note that M is (D⊥, DT )-mixed totally geodesic, so we have

‖h‖2 = ‖h(DT , DT )‖2 + ‖h(Dθ, Dθ)‖2 + ‖h(D⊥, D⊥)‖2+

‖h(DT , Dθ)‖2 + 2‖h(D⊥, Dθ)‖2,

‖h‖2 =

r∑
i,j=1

q∑
a=1

g(h(ei, ej), e
′
a)2 +

r∑
i,j=1

p∑
m=1

g(h(ei, ej), e
∗
m)2 +

q∑
a,b,c=1

g(h(ẽa, ẽj), e
′
c)

2 +

q∑
a,b=1

p∑
m=1

g(h(ẽa, ẽb), e
∗
m)2 +

p∑
m,n=1

q∑
a=1

g(h(ea, eb), e
′
a)2 +

p∑
m,n,k=1

g(h(em, en), e∗k)2 +(29)

2

r∑
i=1

p∑
m=1

q∑
a=1

g(h(ei, em), e′a)2 + 2

r∑
i=1

p∑
m,n=1

g(h(ei, em), e∗n)2 +

2

p∑
m=1

q∑
a,b=1

g(h(ẽm, ẽa), e′b)
2 + 2

p∑
m,n=1

q∑
a=1

g(h(em, ẽa), e∗n)2,

‖h‖2 =

r∑
i,j=1

q∑
a=1

g(h(ei, ej), Jẽa)2 +

r∑
i,j=1

p∑
m=1

g(h(ei, ej), Nem)2+

q∑
a,b,c=1

g(h(ẽa, ẽj), Jẽ′c)
2 +

q∑
a,b=1

p∑
m=1

g(h(ẽa, ẽb), Nem)2

p∑
m,n=1

q∑
a=1

g(h(ea, eb), Jẽ′a)2 +

p∑
m,n,k=1

g(h(em, en), Nek)2+
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2

r∑
i=1

p∑
m=1

q∑
a=1

g(h(ei, em), J(ea))2 + 2

r∑
i=1

p∑
m,n=1

g(h(ei, em), Nen)2

2

p∑
m=1

q∑
a,b=1

g(h(ẽm, ẽa), J(ẽb))
2 + 2

p∑
m,n=1

q∑
a=1

g(h(em, ẽa), Nen)2.

Using (25), (26), and (27), we have

(30)

r∑
i,j=1

q∑
a=1

g(h(ei, ej), Jẽa)2 =

r∑
i,j=1

q∑
a=1

(−ẽa(lnf)[g(Jej , ei) + g(ej , ei)])
2.

Using Lemma 2 of [26, p. 9], we have

r∑
i,j=1

p∑
m=1

g(h(ei, ej), Nem)2 =

r∑
i,j=1

p∑
m=1

(Tem(lnf)g(ei, ej)

− em(lnf)g(ei, T ej))
2.

(31)

Using (12), (30), (31), and (29), we get

‖h‖2 ≥
r∑

i,j=1

q∑
a=1

(−ẽa(lnf)[g(Jej , ei) + g(ej , ei)])
2 +

r∑
i,j=1

p∑
m=1

cos2 θ(T + I)

(em(lnf)g(ei, ej))
2 + (em(lnf)g(ei, T ej))

2.

Thus we obtain

‖h‖2 ≥ r[‖∇⊥(lnf)‖2 + 2 cos2 θ‖∇θ(lnf)‖2],

which is (28).

Example 4.5. Let us consider the golden Riemannian manifold R9 = R5×
R4 with usual metric g and golden structure J defined by

J(
∂

∂xi
,
∂

∂yi
) = (φ

∂

∂x1
, φ

∂

∂x2
, φ

∂

∂x3
, φ

∂

∂x4
, φ

∂

∂x5
, φ

∂

∂y1
, φ

∂

∂y2
, φ

∂

∂y3
, φ

∂

∂y4
),



Warped product skew semi-invariant submanifolds 13

where i, j ∈ {1, 2, 3, 4}. Then we have

J2(
∂

∂xi
,
∂

∂yi
)

= (φ2
∂

∂x1
, φ

2 ∂

∂x2
, φ

2 ∂

∂x3
, φ2

∂

∂x4
, φ

2 ∂

∂x4
, φ2

∂

∂y1
, φ2

∂

∂y2
, φ

2 ∂

∂y3
, φ

2 ∂

∂y4
),

J2(
∂

∂xi
,
∂

∂yi
) = ((φ+ 1)

∂

∂x1
, (φ+ 1)

∂

∂x2
, (φ+ 1)

∂

∂x3
, (φ+ 1)

∂

∂x4
, (φ+ 1)

∂

∂x5
,

(φ+ 1)
∂

∂y1
, (φ+ 1)

∂

∂y2
, (φ+ 1)

∂

∂y3
, (φ+ 1)

∂

∂y4
),

J2(
∂

∂xi
,
∂

∂yi
) = J(

∂

∂x1
,
∂

∂x2
,
∂

∂x3
,
∂

∂x4
,
∂

∂x5
,
∂

∂y1
,
∂

∂y2
,
∂

∂y3
,
∂

∂y4
,
∂

∂y5
)

+ (
∂

∂x1
,
∂

∂x2
,
∂

∂x3
,
∂

∂x4
,
∂

∂x5
,
∂

∂y1
,
∂

∂y2
,
∂

∂y3
,
∂

∂y4
),

J2 = J + I.

Consider a submanifold M = (R9, g, J) given by

f(γ, β, u, v) = (u+ v, u− v, u cosβ, u sinβ, u, v, u cos γ, u sin γ,
√
φ).

The tangent bundle of M is spanned by

Z1 = −u sin γ
∂

∂x1
+ u cos γ

∂

∂x4
,

Z2 = −u sinβ
∂

∂x2
+ u cosβ

∂

∂y3
,

Z3 = cos γ
∂

∂x2
+ sin γ

∂

∂y3
+ u

∂

∂y2
− v ∂

∂y4
+ cosβ

∂

∂x1
+ sinβ

∂

∂x4
,

Z4 = cosβ
∂

∂y1
+ cos γ

∂

∂x3
+

√
φ
∂

∂x5
+ sinβ

∂

∂y2
+ sin γ

∂

∂y4
.

By direct calculations, we see that DT = span{Z1, Z2} is an invariant dis-
tribution, Dα = span{Z3} is a slant distribution with slant angle

α = arccos

 φ(1 + u2) + φ(1 + v2)√
(2 + u2 + v2)(φ2(1 + v2) + φ(1 + u2))

 ,

and D⊥ = {Z4} is an anti-invariant, since J(Z4) is orthogonal to TM. Thus,
we can conclude that M is a proper skew semi-invariant submanifold of M.

If we denote the integral submanifolds of Dα, D⊥ and DT by Mα, M⊥, and
MT , respectively, then induced metric tensor of M is

ds2 = u2(dγ + dβ) + (2 + u2 + v2)du+ (2 + φ)dv.

ThusM = Mα×M⊥×MT is a warped product skew semi-invariant submanifold
of M with warping function f = u.
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