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STABILIZERS ON SHEFFER STROKE BL-ALGEBRAS

Tugce Katican, Tahsin Oner, and Arsham Borumand Saeid∗

Abstract. In this study, new properties of various filters on a Sheffer

stroke BL-algebra are studied. Then some new results in filters of Sheffer
stroke BL-algebras are given. Also, stabilizers of nonempty subsets of

Sheffer stroke BL-algebras are defined and some properties are examined.
Moreover, it is shown that the stabilizer of a filter with respect to a/n

(ultra) filter of a Sheffer stroke BL-algebra is its (ultra) filter. It is proved

that the stabilizer of the subset {0} of a Sheffer stroke BL-algebra is {1}.
Finally, it is stated that the stabilizer St(P,Q) of P with respect to Q is

an ultra filter of a Sheffer stroke BL-algebra when P is any filter and Q

is an ultra filter of this algebra.

1. Introduction

The filter theory plays an important role in studying logical algebras. From
logical point of view, they are typically used to prove the completeness of the
non-classical logics. Various filters of logical algebras and residuated lattices
such as ultra, prime, (positive) implicative, Boolean etc. have been compre-
hensively investigated [5]-[25].

The concept of BL-algebras is developed from the continuous t-norms as
an algebraic structure of Hájek’ s Basic Logic (BL) [7]. Hájek gave filters and
prime filters on this algebraic structure and proved the completeness of basic
logic by using these prime filters [7]. Also, Boolean, (positive) implicative, max-
imal, prime filters and deductive systems of BL-algebras are widely examined
([8], [11]). Especially, Turunen analysed filters and deductive systems which
are implicative and Boolean filters of BL-algebras ([23], [24]). Recently, A.
Borumand Saeid et al. studied on some types of filters of BL-algebras [1]-[3].
Indeed, Haveshki et al. defined a stabilizer on BL-algebras [9], and Borumand
Saeid et al. described new types of stabilizers on residuated lattices and re-
searched the relationships between these stabilizers and various filters such as
obstinate, Boolean and fantastic filters [4].
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Sheffer operation (or Sheffer stroke) was introduced by H. M. Sheffer [22].
Sheffer stroke, which is a negation of a conjunction and is said to be NAND as
well, is one of the two operators that can be used by itself, without any other
logical operators, to construct a logical formal system. There is an interest in
finding simple axiom systems for various algebras and logics, where simplicity
is characterized by the number of axioms in a system. As a well-known exam-
ple, the well-known Boolean algebra axioms can be written in a single axiom
using the Sheffer stroke [12]. Since Boolean algebras are the basis of all mod-
ern programming languages and also Sheffer stroke has all diods on the chip
forming processor in a computer, i.e., producing a single diod for this opera-
tion is simpler and cheaper than to produce different diods for other Boolean
operations, this operation contributes to some new developments in computer
science. It provides new and easily applicable axiom systems for many algebraic
structures, and leads to various similarities and discrepancies among algebraic
structures due to its commutative property. Particularly, Oner et al introduced
a BL-algebra with the Sheffer operation called a Sheffer stroke BL-algebra,
and examined various (fuzzy) filter and neutrosophic N -structures on this al-
gebraic structure ([14], [10]). Recently, they studied filters and neutrosophic
N−structures on strong Sheffer stroke non-associative MV-algebras ([13], [17]),
fuzzy filters and neutrosophic N−structures on Sheffer stroke Hilbert algebras
([15], [16], [18]), Sheffer stroke BG-algebras [19] and their fuzzy implicative
ideals [20] and Sheffer stroke BCK-algebras [21].

For better understanding this algebraic structure, we must get more results
and study it in details and this motivate us to study various filters on a Sheffer
stroke BL-algebra and stabilizers of nonempty subsets of Sheffer stroke BL-
algebras. We analyze new properties and some results in filters of a Sheffer
stroke BL-algebra. Then we define a stabilizer of a nonempty subset of a Sheffer
stroke BL-algebra and prove that it is a filter of this algebraic structure. It
is shown that a stabilizer of the subset {c} of a Sheffer stroke BL-algebra is
an ultra filter, which there exist no an element a of this algebraic structure
such that c < a < 1. It is stated that the stabilizer of the subset {0} of a
Sheffer stroke BL-algebra is {1} and it is involved via all filters of this algebraic
structure. Moreover, a stabilizer of nonempty subsets of a Sheffer stroke BL-
algebra with respect to each other is determined and examined. Also, it is
demonstrated that the stabilizer St(P,Q) of P with respect to Q is a filter of
a Sheffer stroke BL-algebra if P and Q are two filters of this algebra. Finally,
we state that St(P,Q) is an ultra filter of a Sheffer stroke BL-algebra when P
is any filter and Q is an ultra filter of this algebra.

2. Preliminaries

In this section, we give fundamental definitions and notions about Sheffer
stroke BL-algebras and filters.
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Definition 2.1. [6] Let L = 〈L, |〉 be a groupoid. The operation | is said
to be a Sheffer stroke if it satisfies the following conditions:
(S1) c1|c2 = c2|c1,
(S2) (c1|c1)|(c1|c2) = c1,
(S3) c1|((c2|c3)|(c2|c3)) = ((c1|c2)|(c1|c2))|c3,
(S4) (c1|((c1|c1)|(c2|c2)))|(c1|((c1|c1)|(c2|c2))) = c1,
for all c1, c2, c3 ∈ L.

Definition 2.2. [14] A Sheffer stroke BL-algebra is an algebra (L,∨,∧, |, 0, 1)
of type (2, 2, 2, 0, 0) satisfying the following conditions:
(sBL− 1) (L,∨,∧, 0, 1) is a bounded lattice,
(sBL− 2) (L, |) is a groupoid with the Sheffer stroke,
(sBL− 3) c1 ∧ c2 = (c1|(c1|(c2|c2)))|(c1|(c1|(c2|c2))),
(sBL− 4) (c1|(c2|c2)) ∨ (c2|(c1|c1)) = 1,
for all c1, c2 ∈ L.

Also, 1 = 0|0 is the greatest element and 0 = 1|1 is the least element of L.

Example 2.3. [14] For a set L = {0, u, v, 1}, the Sheffer stroke BL-algebra
(L,∨,∧, |, 0, 1) has the Hasse diagram in Figure 1 and the binary operations |,
∨ and ∧ on L have Cayley tables in Table 1:

Figure 1. Hasse diagram of the Sheffer stroke BL-algebra in
Example 2.3

Table 1. Cayley tables of |, ∨ and ∧ on L

| 0 u v 1
0 1 1 1 1
u 1 v 1 v
v 1 1 u u
1 1 v u 0

∨ 0 u v 1
0 0 u v 1
u u u 1 1
v v 1 v 1
1 1 1 1 1

∧ 0 u v 1
0 0 0 0 0
u 0 u 0 u
v 0 0 v v
1 0 u v 1

Example 2.4. [14] For a set L = {0, a, b, c, d, e, f, 1}, the Sheffer stroke
BL-algebra (L,∨,∧, |, 0, 1) with the Hasse diagram in Figure 2 and the binary
operations |, ∨ and ∧ on L have Cayley tables in Table 2, 3 and 4, respectively:
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Figure 2. Hasse diagram of the Sheffer stroke BL-algebra in
Example 2.4

Table 2. Cayley table of | on L

| 0 a b c d e f 1
0 1 1 1 1 1 1 1 1
a 1 f 1 1 f f 1 f
b 1 1 e 1 e 1 e e
c 1 1 1 d 1 d d d
d 1 f e 1 c f e c
e 1 f 1 d f b d b
f 1 1 e d e d a a
1 1 f e d c b a 0

Table 3. Cayley table of ∨ on L

∨ 0 a b c d e f 1
0 0 a b c d e f 1
a a a d e d e 1 1
b b d b f d 1 f 1
c c e f c 1 e f 1
d d d d 1 d 1 1 1
e e e 1 e 1 e 1 1
f f 1 f f 1 1 f 1
1 1 1 1 1 1 1 1 1

Unless otherwise specified, L is stated a Sheffer stroke BL-algebra.

Proposition 2.5. [14] In any Sheffer stroke BL-algebra L, the following
features hold, for all c1, c2, c3 ∈ L:

1. c1|((c2|(c3|c3))|(c2|(c3|c3))) = c2|((c1|(c3|c3))|(c1|(c3|c3))),
2. c1|(c1|c1) = 1,
3. 1|(c1|c1) = c1,
4. c1|(1|1) = 1,
5. (c1|1)|(c1|1) = c1,
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Table 4. Cayley table of ∧ on L

∧ 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 a 0 0 a a 0 a
b 0 0 b 0 b 0 b b
c 0 0 0 c 0 c c c
d 0 a b 0 d a b d
e 0 a 0 c a e c e
f 0 0 b c b c f f
1 0 a b c d e f 1

6. (c1|c2)|(c1|c2) ≤ c3 ⇔ c1 ≤ c2|(c3|c3)
7. c1 ≤ c2 iff c1|(c2|c2) = 1,
8. c1 ≤ c2|(c1|c1),
9. c1 ≤ (c1|c2)|c2,

10. (a) (c1|(c1|(c2|c2)))|(c1|(c1|(c2|c2))) ≤ c1,
(b) (c1|(c1|(c2|c2)))|(c1|(c1|(c2|c2))) ≤ c2.

11. If c1 ≤ c2, then
(i) c3|(c1|c1) ≤ c3|(c2|c2),

(ii) (c1|c3)|(c1|c3) ≤ (c2|c3)|(c2|c3),
(iii) c2|(c3|c3) ≤ c1|(c3|c3).

12. c1|(c2|c2) ≤ (c3|(c1|c1))|((c3|(c2|c2))|(c3|(c2|c2))),
13. c1|(c2|c2) ≤ (c2|(c3|c3))|((c1|(c3|c3))|(c1|(c3|c3))),
14. ((c1 ∨ c2)|c3)|((c1 ∨ c2)|c3) = ((c1|c3)|(c1|c3)) ∨ ((c2|c3)|(c2|c3)),
15. c1 ∨ c2 = ((c1|(c2|c2))|(c2|c2)) ∧ ((c2|(c1|c1))|(c1|c1)).

Lemma 2.6. [14] Let L be a Sheffer stroke BL-algebra. Then

(c1|(c2|c2))|(c2|c2) = (c2|(c1|c1))|(c1|c1),

for all c1, c2 ∈ L.

Corollary 2.7. [14] Let L be a Sheffer stroke BL-algebra. Then

c1 ∨ c2 = (c1|(c2|c2))|(c2|c2),

for all c1, c2 ∈ L.

Lemma 2.8. [14] Let L be a Sheffer stroke BL-algebra. Then

((c1|(c2|c2))|(c2|c2))|(c2|c2) = c1|(c2|c2),

for all c1, c2 ∈ L.

Lemma 2.9. [14] Let L be a Sheffer stroke BL-algebra. Then

c1|((c2|(c3|c3))|(c2|(c3|c3))) = (c1|(c2|c2))|((c1|(c3|c3))|(c1|(c3|c3))),

for all c1, c2, c3 ∈ L.
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Definition 2.10. [14] A filter P of L is a nonempty subset P ⊆ L satisfying
(SF − 1) if c1, c2 ∈ P , then (c1|c2)|(c1|c2) ∈ P ,
(SF − 2) if c1 ∈ P and c1 ≤ c2, then c2 ∈ P .

Proposition 2.11. [14] Let P be a nonempty subset of L. Then P is a
filter of L if and only if the following hold:
(SF − 3) 1 ∈ P ,
(SF − 4) c1 ∈ P and c1|(c2|c2) ∈ P imply c2 ∈ P.

Lemma 2.12. [14] Let P be a filter of L. Then

(a) c3|((c2|(c1|c1))|(c2|(c1|c1))) ∈ P and c3 ∈ P imply ((c1|(c2|c2))|(c2|c2))|
(c1|c1) ∈ P ,

(b) c1|((c2|(c3|c3))|(c2|(c3|c3))) ∈ P and c1|(c2|c2) ∈ P imply c1|(c3|c3) ∈ P ,
(c) c1|(((c2|(c3|c3))|(c2|c2))|((c2|(c3|c3))|(c2|c2))) ∈ P and c1 ∈ P imply c2 ∈

P ,

for any c1, c2, c3 ∈ L.

Definition 2.13. [14] Let P be a filter of L. Then P is called an ultra filter
of L if it satisfies c ∈ P or c|c ∈ P , for all c ∈ L.

Lemma 2.14. [14] A filter P of L is an ultra filter of L if and only if
c1 ∨ c2 ∈ P implies c1 ∈ P or c2 ∈ P , for all c1, c2 ∈ L.

3. Characterization by filters

In this section, we present characterizations of Sheffer stroke BL-algebras
via filters.

Define a subset C(c1, c2) of L by

C(c1, c2) = {z ∈ L : c2 ≤ c1|(z|z)},
for any c1, c2 ∈ L.

Proposition 3.1. Let P be a nonempty subset of L. Then the following
conditions are equivalent:

1. P is a filter of L.
2. C(c1, c2) ⊆ P , for any c1, c2 ∈ P .
3. c2|((c1|(c3|c3))|(c1|(c3|c3))) = 1 implies c3 ∈ P , for any c1, c2 ∈ P and

c3 ∈ L.

Proof. (1)⇒(2) Let P be a filter of L and c1, c2 ∈ P . Assume that z ∈
C(c1, c2). Then c2 ≤ c1|(z|z). Thus, c1|(z|z) ∈ P from (SF-2), and so, z ∈ P
from (SF-4). It means that C(c1, c2) ⊆ P , for any c1, c2 ∈ P .

(2)⇒(3) It is clear.
(3)⇒(1) Let P be a nonempty subset of L such that c2|((c1|(c3|c3))|(c1|(c3|

c3))) = 1 implies c3 ∈ P , for any c1, c2 ∈ P and c3 ∈ L.
� Let c1 and c2 be any elements of P . Since c2|((c1|(((c1|c2)|(c1|c2))|((c1|c2)|(c1|
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c2))))|(c1|(((c1|c2)|(c1|c2))|((c1|c2)|(c1|c2))))) = c2|((c1|(c1|c2))|(c1|(c1|c2))) =
(c1|c2)|((c1|c2)|(c1|c2)) = 1 from (S1)-(S3) and Proposition 2.5 (2), it is ob-
tained that (c1|c2)|(c1|c2) ∈ P .
� Let c1 ∈ P and c1 ≤ c2. Since c1|((c1|(c2|c2))|(c1|(c2|c2))) = ((c1|c1)|(c1|c1))|
(c2|c2) = c1|(c2|c2) = 1 from (S3), (S2) and Proposition 2.5 (7), respectively, it
follows that c2 ∈ P .

Lemma 3.2. Let L be a Sheffer stroke BL-algebra. Then

1. C(c1, c2) = C(c2, c1),
2. C(c, 0) = C(0, c) = L,
3. C(c, 1) = C(1, c) = {z ∈ L : c ≤ z},
4. C(0, 0) = L,
5. C(1, 1) = {1},
6. 1 ∈ C(c1, c2), for all c1, c2 ∈ L,
7. if c1 ≤ c2, then

(a) C(x, c2) ⊆ C(x, c1),
(b) C(c2, x) ⊆ C(c1, x),

for all x, c, c1, c2 ∈ L.

Proof. 1. Since we have from Proposition 2.5 (1) and (7) that

z ∈ C(c1, c2)⇔ c2 ≤ c1|(z|z)

⇔ c2|((c1|(z|z))|(c1|(z|z))) = 1

⇔ c1|((c2|(z|z))|(c1|(z|z))) = 1

⇔ c1 ≤ c2|(z|z)

⇔ z ∈ C(c2, c1),

for all c1, c2, z ∈ L, it follows that C(c1, c2) = C(c2, c1).
2. C(c, 0) = C(0, c) = L is obtained from (1), (S1) and Proposition 2.5 (4).
3. C(c, 1) = C(1, c) = {z ∈ L : c ≤ z} follows from (1) and Proposition 2.5

(3).
4. It is obvious from (2).
5. C(1, 1) = {z ∈ L : 1 ≤ z} = {1} by (3) and the fact that 1 is the greatest

element of L.
6. Since c2 ≤ c1|(1|1) = 1 from Proposition 2.5 (4) and 1 is the greatest

element of L, it follows that 1 ∈ C(c1, c2), for all c1, c2 ∈ L.
7. (a) Let c1 ≤ c2 and z ∈ C(x, c2). Then c2 ≤ x|(z|z). Since c1 ≤ c2 ≤

x|(z|z), it is obtained that z ∈ C(x, c1). Thus, C(x, c2) ⊆ C(x, c1).
(b) C(c2, x) ⊆ C(c1, x) proved from (a) and (1).

Lemma 3.3. Let L be a Sheffer stroke BL-algebra. Then c1 ≤ c2 ⇔ c2|c2 ≤
c1|c1, for all c1, c2 ∈ L.

Proof. It follows from Proposition 2.5 (7), (S1) and (S2).
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Lemma 3.4. Let L be a Sheffer stroke BL-algebra. Then C(c1 ∨ c2, c3) =
C(c1, c3) ∪ C(c2, c3), for all c1, c2, c3 ∈ L.

Proof. Let z ∈ C(c1, c3) ∪ C(c2, c3). Then z ∈ C(c1, c3) or z ∈ C(c2, c3).
Thus, c3 ≤ c1|(z|z) or c3 ≤ c2|(z|z), and so, (c1|(z|z))|(c1|(z|z)) ≤ c3|c3 or
(c2|(z|z))|(c2|(z|z)) ≤ c3|c3 from Lemma 3.3. Hence, it is obtained from Propo-
sition 2.5 (14) that ((c1 ∨ c2)|(z|z))|((c1 ∨ c2)|(z|z)) = ((c1|(z|z))|(c1|(z|z))) ∨
((c2|(z|z))|(c2|(z|z))) ≤ c3|c3. So, it follows from Lemma 3.3 and (S2) that
c3 ≤ (c1 ∨ c2)|(z|z) which implies z ∈ C(c1 ∨ c2, c3). Therefore, C(c1, c3) ∪
C(c2, c3) ⊆ C(c1 ∨ c2, c3). Also, C(c1 ∨ c2, c3) ⊆ C(c1, c3) ∪ C(c2, c3) follows
from Lemma 3.2 7(b).

Lemma 3.5. Let L be a Sheffer stroke BL-algebra. Then C(c1, c3) ∩
C(c2, c3) ⊆ C(c1 ∧ c2, c3), for all c1, c2, c3 ∈ L.

Proof. By Lemma 3.2 7(b), C(c1, c3) ∩ C(c2, c3) ⊆ C(c1 ∧ c2, c3), for all
c1, c2, c3 ∈ L.

Example 3.6. Consider the Sheffer stroke BL-algebra L in Example 2.4.
Then {e, 1} = {a, d, e, 1} ∩ {c, e, f, 1} = C(a, e) ∩ C(f, e) ⊆ C(a ∧ f, e) =
C(0, e) = L.

Lemma 3.7. Let L be a Sheffer stroke BL-algebra. Then

1. c1|c1 ≤ c1|c2 and c2|c2 ≤ c1|c2,
2. c1 ≤ c2 and d1 ≤ d2 imply c2|d2 ≤ c1|d1,

for all c1, c2, d1, d2 ∈ L.

Proof. 1. It is proved from Proposition 2.5 (8), (S1) and (S2).
2. Let c1 ≤ c2 and d1 ≤ d2. Since c2|d2 = c2|((d2|d2)|(d2|d2)) ≤ c1|((d2|d2)|

(d2|d2)) = c1|d2 and c1|d2 = d2|((c1|c1)|(c1|c1)) ≤ d1|((c1|c1)|(c1|c1)) =
c1|d1 from Proposition 2.5 11(iii), (S1) and (S2), we have c2|d2 ≤ c1|d1.

Lemma 3.8. Let L be a Sheffer stroke BL-algebra. Then C(c1|c2, c3) =
C(c1|c1, c3) ∩ C(c2|c2, c3), for all c1, c2, c3 ∈ L.

Proof. Since c1|c1 ≤ c1|c2 and c2|c2 ≤ c1|c2 from Lemma 3.7 (1), it fol-
lows from Lemma 3.2 7(b) that C(c1|c2, c3) ⊆ C(c1|c1, c3) and C(c1|c2, c3) ⊆
C(c2|c2, c3), and so, C(c1|c2, c3) ⊆ C(c1|c1, c3) ∩ C(c2|c2, c3).

Conversely, let z ∈ C(c1|c1, c3) ∩ C(c2|c2, c3). Then z ∈ C(c1|c1, c3) and
z ∈ C(c2|c2, c3), and so, c3 ≤ (c1|c1)|(z|z) and c3 ≤ (c2|c2)|(z|z). Thus,
(c3|(z|z))|(c3|(z|z)) ≤ c1 and (c3|(z|z))|(c3|(z|z)) ≤ c2 from Proposition 2.5 (6)
and (S1). Hence, it follows from Lemma 3.7 (2) and (S2) that c1|c2 ≤ c3|(z|z).
So, we have from Lemma 3.2 (1) that z ∈ C(c3, c1|c2) = C(c1|c2, c3) which
means that C(c1|c1, c3) ∩ C(c2|c2, c3) ⊆ C(c1|c2, c3).
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Lemma 3.9. Let P be a nonempty subset of L. Then P is a filter of L if
and only if
(SF − 5) 1 ∈ P and
(SF − 6) c1|((c2|(c3|c3))|(c2|(c3|c3))) ∈ P and c1|(c2|c2) ∈ P imply c1|(c3|c3) ∈
P , for all c1, c2, c3 ∈ L.

Proof. It is obvious from (SF − 3)and Lemma 2.12 (b).
Conversely, let P be a nonempty subset of L satisfying (SF−5) and (SF−6).

Suppose that c1 ∈ P and c1|(c2|c2) ∈ P . Since 1|((c1|(c2|c2))|(c1|(c2|c2))) =
c1|(c2|c2) ∈ P and 1|(c1|c1) = c1 ∈ P from Proposition 2.5 (3), it follows from
(SF − 6) that c2 = 1|(c2|c2) ∈ P . Thus, P is a filter of L by Proposition
2.11.

Lemma 3.10. Let P be a nonempty subset of L. Then P is a filter of L if
and only if Pa = {c ∈ L : a|(c|c) ∈ P} is a filter of L, for any a ∈ L.

Proof. Let P be a filter of L. Since a|(1|1) = 1 ∈ P from Proposition 2.5
(4), we have 1 ∈ Pa. Let c1 ∈ Pa and c1|(c2|c2) ∈ Pa. Then a|(c1|c1) ∈ P and
a|((c1|(c2|c2))|(c1|(c2|c2))) ∈ P . Thus, it is obtained from Lemma 2.12 (b) that
a|(c2|c2) ∈ P which implies c2 ∈ Pa. Hence, Pa is a filter of L from Proposition
2.11.

Conversely, let Pa be a filter of L. Since 1 ∈ Pa, it follows from Proposition
2.5 (4) that 1 = a|(1|1) ∈ P . Let a|((c1|(c2|c2))|(c1|(c2|c2))) ∈ P and a|(c1|c1) ∈
P . Then c1|(c2|c2) ∈ Pa and c1 ∈ Pa. Thus, c2 ∈ Pa which means that
a|(c2|c2) ∈ P . Hence, P is a filter of L by Lemma 3.9.

Example 3.11. Consider the Sheffer stroke BL-algebra L in Example 2.4.
For the filter P = {f, 1} of L, Pb = {b, d, f, 1} is a filter of L.

Lemma 3.12. Let P be a nonempty subset of L. Then P is a filter of L if
and only if
(SF − 7) 1 ∈ P and
(SF − 8) c1|(c2|c2) ∈ P and c2|(c3|c3) ∈ P imply c1|(c3|c3) ∈ P , for all
c1, c2, c3 ∈ L.

Proof. Let P be a filter of L, c1|(c2|c2) ∈ P and c2|(c3|c3) ∈ P . Since
c1|(c2|c2) ≤ (c2|(c3|c3))|((c1|(c3|c3))|(c1|(c3|c3))) from Proposition 2.5 (13), we
have from (SF − 2) and (SF − 4) that c1|(c3|c3) ∈ P . Also, 1 ∈ P from
(SF − 3).

Conversely, let P be a nonempty subset of L satisfying (SF−7) and (SF−8),
c1 ∈ P and c1|(c2|c2) ∈ P . Since 1|(c1|c1) = c1 ∈ P from Proposition 2.5 (3)
and c1|(c2|c2) ∈ P , it follows from (SF − 8) and Proposition 2.5 (3) that
c2 = 1|(c2|c2) ∈ P . Hence, P is a filter of L by Proposition 2.11.

Proposition 3.13. Let P be a filter of L. Then Pa is the minimal filter of
L containing P and a.



Stabilizers on Sheffer stroke BL-algebras 87

Proof. Let P be a filter of L. Then Pa is a filter of L from Lemma 3.10.
Assume that c ∈ P . Since c ≤ a|(c|c) from Proposition 2.5 (8) it follows from
(SF − 2) that a|(c|c) ∈ P which implies c ∈ Pa. Thus, P ⊆ Pa. Also, we get
a ∈ Pa since a|(a|a) = 1 ∈ P from Proposition 2.5 (2) and (SF − 3). Let Q be
a filter of L containing P and a. So, a|(c|c) ∈ P ⊆ Q, for any c ∈ Pa. Since
a ∈ Q and a|(c|c) ∈ Q, it is obtained from (SF − 4) that c ∈ Q. Therefore,
Pa ⊆ Q.

Remark 3.14. Let P and Q be two filters of L. Then P ∩ Q is always a
filter of L. However, P ∪Q is generally not a filter of L.

Example 3.15. Consider the Sheffer stroke BL-algebra L in Example 2.3.
For the filters {u, 1} and {v, 1} of L, {u, 1} ∪ {v, 1} = {u, v, 1} is not a filter of
L since (u|v)|(u|v) = 1|1 = 0 /∈ {u, v, 1} when u, v ∈ {u, v, 1}.

Corollary 3.16. Let P and Q be two filters of L. If L = {0, 1}, then P ∪Q
is a filter of L.

Proposition 3.17. Let P and Q be two filters of L. Then

1. Pa = P if and only if a ∈ P ,
2. a ≤ b implies Pb ⊆ Pa,
3. P ⊆ Q implies Pa ⊆ Qa,
4. (P ∩Q)a = Pa ∩Qa,
5. P(a|b)|(a|b) = (Pa)b,
6. (Pa)b = (Pb)a,
7. (Pa)a = Pa,
8. P1 = P and P0 = L,

for any a, b ∈ L.

Proof. 1. Let Pa = P . Since a|(a|a) = 1 ∈ P from Proposition 2.5 (2)
and (SF − 3), it follows that a ∈ Pa = P . Conversely, let a ∈ P . Since
it is known from Proposition 2.5 (8) that c ≤ a|(c|c), for any c ∈ P , we
have from (SF−2) that a|(c|c) ∈ P which implies c ∈ Pa. Thus, P ⊆ Pa.
Moreover, since a|(c|c) ∈ P , for any c ∈ Pa, and a ∈ P , it is obtained
from (SF − 4) that c ∈ P which implies Pa ⊆ P . Hence, Pa = P .

2. Let a ≤ b and c ∈ Pb. Then b|(c|c) ∈ P . Since b|(c|c) ≤ a|(c|c) from
Proposition 2.5 11(iii), it follows from (SF − 2) that a|(c|c) ∈ P which
implies c ∈ Pa. Thus, Pb ⊆ Pa.

3. Let P ⊆ Q and c ∈ Pa. Then a|(c|c) ∈ P , and a|(c|c) ∈ Q. Thus, c ∈ Qa

which means that Pa ⊆ Qa.
4. Since P ∩ Q ⊆ P and P ∩ Q ⊆ Q, (P ∩ Q)a ⊆ Pa and (P ∩ Q)a ⊆ Qa

from (3). Then (P ∩Q)a ⊆ Pa ∩Qa. Let c ∈ Pa ∩Qa. Thus, c ∈ Pa and
c ∈ Qa, and so, a|(c|c) ∈ P and a|(c|c) ∈ Q. Hence, a|(c|c) ∈ P ∩Q which
means that c ∈ (P ∩Q)a. Therefore, Pa ∩Qa ⊆ (P ∩Q)a. Consequently,
(P ∩Q)a = Pa ∩Qa.



88 Tugce Katican, Tahsin Oner, and Arsham Borumand Saeid

5. Since

c ∈ P(a|b)|(a|b) ⇔ ((a|b)|(a|b))|(c|c) ∈ P

⇔ a|((b|(c|c))|(b|(c|c))) = ((a|b)|(a|b))|(c|c) ∈ P

⇔ b|(c|c) ∈ Pa

⇔ c ∈ (Pa)b

from (S3), it follows that P(a|b)|(a|b) = (Pa)b.
6. (Pa)b = P(a|b)|(a|b) = P(b|a)|(b|a) = (Pb)a from (5) and (S1).
7. By substituting [b := a] in (5), it follows from (S2) that

(Pa)a = P(a|a)|(a|a) = Pa.

8. P1 = {c ∈ L : c = 1|(c|c) ∈ P} = P from Proposition 2.5 (3), and
P0 = {c ∈ L : 1 = (c|c)|(1|1) = 0|(c|c) ∈ P} = L from Proposition 2.5
(4) and (S1).

It is not necessary that a ≤ b when Pb ⊆ Pa, and Pa ⊆ Qa does not imply
P ⊆ Q.

Example 3.18. Consider the Sheffer stroke BL-algebra L in Example 2.4.
For the filter P = {e, 1} of L, d � e when Pe = P = {e, 1} ⊆ Pd = {a, d, e, 1}.
Besides, P = {e, 1} * Q = {f, 1} when Pa = {a, d, e, 1} ⊆ L = Qa.

Lemma 3.19. Let P be a filter of L. Then

1. Pa∨b ⊆ Pa ∪ Pb,
2. Pa ∩ Pb ⊆ Pa∧b,

for any a, b ∈ L.

Proof. The proof is completed from Proposition 3.17 (2).

Example 3.20. Consider the Sheffer stroke BL-algebra L in Example 2.4.
For the filter P = {d, 1} of L, Pa∨c = Pe = {a, d, e, 1} ⊆ L = {a, d, e, 1} ∪ L =
Pa∪Pc. Moreover, Pd∩Pe = {b, d, f, 1}∩{c, e, f, 1} = {f, 1} ⊆ L = Pa = Pd∧e,
for the filter P = {f, 1} of L.

Theorem 3.21. Let P be a filter of L. Then

1.
⋂

a∈L Pa = P and
2.

⋃
a∈L Pa = L,

for any a ∈ L.

Proof. It is proved from Proposition 3.13 and Proposition 3.17 (8).

Proposition 3.22. Let L be a Sheffer stroke BL-algebra. Then C(a) =
{c ∈ L : a|(c|c) = 1} is a filter of L.
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Proof. Since a|(1|1) = 1 from Proposition 2.5 (4), we get 1 ∈ C(a). Let c1 ∈
C(a) and c1|(c2|c2) ∈ C(a). Then a|(c1|c1) = 1 and a|((c1|(c2|c2))|(c1|(c2|c2)))
= 1. Since

a|(c2|c2) = 1|((a|(c2|c2))|(a|(c2|c2)))

= (a|(c1|c1))|((a|(c2|c2))|(a|(c2|c2)))

= a|((c1|(c2|c2))|(c1|(c2|c2)))

= 1

from Proposition 2.5 (3) and Lemma 2.9, it follows that c2 ∈ C(a). Thus, C(a)
is a filter of L by Proposition 2.11.

Lemma 3.23. Let L be a Sheffer stroke BL-algebra. Then

1. C(0) = L and C(1) = {1},
2. a ≤ b if and only if C(b) ⊆ C(a), and
3. C(a|b) = C(a|a)

⋂
C(b|b),

for any a, b ∈ L.

Proof. 1. C(0) = {c ∈ L : 0|(c|c) = 1} = {c ∈ L : (c|c)|(1|1) =
1, for all c ∈ L} = L and C(1) = {c ∈ L : c = 1|(c|c) = 1} = {1}
from (S1) and Proposition 2.5 (3)-(4).

2. Let a ≤ b and c ∈ C(b). Then b|(c|c) = 1. Since 1 = b|(c|c) ≤ a|(c|c) from
Proposition 2.5 11(iii), we get a|(c|c) = 1 which means that c ∈ C(a).
Thus, C(b) ⊆ C(a).

Conversely, let C(b) ⊆ C(a). Since b|(b|b) = 1 from Proposition 2.5
(2), we have b ∈ C(b). Then b ∈ C(a), and so, a|(b|b) = 1. Hence, a ≤ b
from Proposition 2.5 (7).

3. Since a|a ≤ a|b and b|b ≤ a|b from Lemma 3.7 (1), it is obtained
from (2) that C(a|b) ⊆ C(a|a) and C(a|b) ⊆ C(b|b). Then C(a|b) ⊆
C(a|a)

⋂
C(b|b).

Conversely, let c ∈ C(a|a)
⋂

C(b|b). Then c ∈ C(a|a) and c ∈ C(b|b),
and so, (a|a)|(c|c) = 1 and (b|b)|(c|c) = 1. Thus, a|a ≤ c and b|b ≤ c
from Proposition 2.5 (7). Since c|c ≤ a and c|c ≤ b from Lemma 3.3
and (S2), it follows from Lemma 3.7 (2) and (S2) that a|b ≤ c. Hence,
(a|b)|(c|c) = 1 from Proposition 2.5 (7). It means that c ∈ C(a|b), i.e.,
C(a|a)

⋂
C(b|b) ⊆ C(a|b).

Theorem 3.24. Let L be a Sheffer stroke BL-algebra. Then

1. C(a) ∩ C(b) ⊆ C(a ∧ b),
2. C(a ∨ b) ⊆ C(a) ∪ C(b),

for any a, b ∈ L.

Proof. The proof follows from Lemma 3.23 (2).
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Example 3.25. Consider the Sheffer stroke BL-algebra L in Example 2.4.
Then C(e) ∩ C(f) = {e, 1}

⋂
{f, 1} = {1} ⊆ {c, e, f, 1} = C(c) = C(e ∧ f).

Also, C(a ∨ b) = C(d) = {d, 1} ⊆ {a, b, d, e, f, 1} = {a, d, e, 1} ∪ {b, d, f, 1} =
C(a) ∪ C(b).

Lemma 3.26. Let P be a filter of L. Then c1, c2 ∈ P implies c1 ∧ c2 ∈ P ,
for any c1, c2 ∈ L.

Proof. Let P be a filter of L and c1, c2 ∈ P . Then (c1|c2)|(c1|c2) ∈ P from
(SF − 1). Since (c1|c2)|(c1|c2) ≤ c1 and (c1|c2)|(c1|c2) ≤ c2 from Proposition
2.5 (6), (8) and (S1), we have (c1|c2)|(c1|c2) ≤ c1 ∧ c2. Thus, c1 ∧ c2 ∈ P from
(SF − 2).

Lemma 3.27. Let P be a filter of L such that P 6= L. Then P is an ultra
filter of L if and only if there exist no a filter Q of L such that P ⊂ Q ⊂ L.

Proof. Let P be an ultra filter of L such that P 6= L. Suppose that Q is a
filter of L such that P ⊂ Q ⊂ L and c ∈ Q such that c /∈ P . Then c|c ∈ P , and
so, c|c ∈ Q. Thus,

0 = 1|1
= (c|(c|c))|(c|(c|c))
= (c|(c|((c|c)|(c|c))))|(c|(c|((c|c)|(c|c))))
= c ∧ (c|c) ∈ Q

from Proposition 2.5 (2), (S2), (sBL − 3) and Lemma 3.26. Since 0 ∈ Q and
0 is the least element of C, it follows from (SF − 2) that c ∈ Q, for all c ∈ L.
Hence, Q = L which is a contradiction. Therefore, there exist no a filter Q of
L such that P ⊂ Q ⊂ L.

Conversely, let there exist no a filter Q of L such that P ⊂ Q ⊂ L. Assume
that c1 ∨ c2 ∈ P but c1, c2 /∈ P . Then there exists a filter Q of L such that
c1 ∈ Q or c2 ∈ Q. Since c1 ≤ c1 ∨ c2 ∈ P and c2 ≤ c1 ∨ c2 ∈ P , it is obtained
from (SF − 2) that c1 ∨ c2 ∈ Q. Thus, P ⊆ Q which is a contradiction. Hence,
c1 ∨ c2 ∈ P implies c1 ∈ P or c2 ∈ P which means that P is an ultra filter of
L by Lemma 2.14.

4. Stabilizers

In this section, we introduce stabilizers in a Sheffer stroke BL-algebra.

Definition 4.1. Let L be a Sheffer stroke BL-algebra and S be a nonempty
subset of L. Then a stabilizer of S is defined as follows:

St(S) = {c ∈ L : c|(x|x) = x (or x|(c|c) = c), ∀x ∈ S}.

Example 4.2. Consider the Sheffer stroke BL-algebra L in Example 2.4.
For the subsets S1 = {c, e} and S2 = {d, 1} of L, the stabilizer of S1 is St(S1) =
{d, 1} and the stabilizer of S2 is St(S2) = {c, e, f, 1}, resp.
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Lemma 4.3. Let S, T and Si (i ∈ I) be nonempty subsets of L. Then

1. S ⊆ T implies St(T ) ⊆ St(S),
2. St(L) = {1} and St({1}) = L,
3. St(S) =

⋂
{St({x}) : x ∈ S},

4.
⋂

i∈I St(Si) = St(
⋂

i∈I Si) and
5.

⋃
i∈I St(Si) = St(

⋃
i∈I Si).

Proof. 1. Let S ⊆ T and c ∈ St(T ). Then c|(x|x) = x, for all x ∈ T .
Since S ⊆ T , c|(y|y) = y, for all y ∈ S. Thus, c ∈ St(S) which implies
St(T ) ⊆ St(S).

2. Since it is known from Proposition 2.5 (3) that 1|(x|x) = x, for all x ∈ L,
it follows that {1} ⊆ St(L). Let c ∈ St(L). Then c|(x|x) = x, for all
x ∈ L. Since 1 = c|(c|c) = c from Proposition 2.5 (2), we get St(L) ⊆ {1}.
Thus, St(L) = {1}. Moreover, since it is known from Proposition 2.5 (4)
that c|(1|1) = 1, for all c ∈ L, it is obtained that St({1}) = L.

3. Let c ∈
⋂
{St({x}) : x ∈ S}. Then c ∈ St({x}), for all x ∈ S. Thus,

c|(x|x) = x, for all x ∈ S, and so, c ∈ St(S). Hence,
⋂
{St({x}) : x ∈

S} ⊆ St(S). Conversely, since {x} ⊆ S, for all x ∈ S, it follows from (1)
that St(S) ⊆ St({x}), for all x ∈ S. So, St(S) ⊆

⋂
{St({x}) : x ∈ S}.

Therefore, St(S) =
⋂
{St({x}) : x ∈ S}.

4. Since
⋂

i∈I Si ⊆ Si, it follows from (1) that St(Si) ⊆ St(
⋂

i∈I Si), and
so,

⋂
i∈I St(Si) ⊆ St(

⋂
i∈I Si). Conversely, let c ∈ St(

⋂
i∈I Si). Then

c|(x|x) = x, for all x ∈
⋂

i∈I Si. Since c|(x|x) = x, for all x ∈ Si and
i ∈ I, we have c ∈ St(Si), for all i ∈ I which means that c ∈

⋂
i∈I St(Si).

Thus, St(
⋂

i∈I Si) ⊆
⋂

i∈I St(Si). Therefore,⋂
i∈I

St(Si) = St(
⋂
i∈I

Si).

5. Since Si ⊆
⋃

i∈I Si, it is obtained from (1) that St(
⋃

i∈I Si) ⊆ St(Si),
and so, St(

⋃
i∈I Si) ⊆

⋃
i∈I St(Si). Conversely, let c ∈

⋃
i∈I St(Si).

Then c ∈ St(Si0), for some i0 ∈ I. Since c|(x|x) = x, for all x ∈ Si0 and
some i0 ∈ I, we get c|(x|x) = x, for all x ∈

⋃
i∈I Si. So, c ∈ St(

⋃
i∈I Si)

which means that
⋃

i∈I St(Si) ⊆ St(
⋃

i∈I Si). Hence,⋃
i∈I

St(Si) = St(
⋃
i∈I

Si).

Theorem 4.4. Let L be a Sheffer stroke BL-algebra and S be a nonempty
subset of L. Then St(S) is a filter of L.

Proof. Let c1, c2 ∈ St(S). Then c1|(x|x) = x and c2|(x|x) = x, for all x ∈ S.
Since it is obtained from (S3) that ((c1|c2)|(c1|c2))|(x|x) = c1|((c2|(x|x))|(c2|(x|
x))) = c1|(x|x) = x, for all x ∈ S, we have (c1|c2)|(c1|c2) ∈ St(S).

Let c1 ∈ St(S) and c1 ≤ c2. Then c1|(x|x) = x, for all x ∈ S, and so,
c2|(x|x) ≤ c1|(x|x) = x from Proposition 2.5 11(iii). Since x ≤ c2|(x|x) from
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Proposition 2.5 (8), it follows that c2|(x|x) = x, for all x ∈ S, which means
that c2 ∈ St(S).

However, S is generally not a filter of L if St(S) is a filter of L.

Example 4.5. Consider the Sheffer stroke BL-algebra L in Example 2.3.
Then St({0, u}) = {v, 1} is a filter of L but {0, u} is not a filter of L.

Theorem 4.6. Let L be a Sheffer stroke BL-algebra and c be an element
of L which there exist no an element a ∈ L such that c < a < 1. Then St({c})
is an ultra filter of L.

Proof. Let L be a Sheffer stroke BL-algebra and c be an element of L which
there exist no an element a ∈ L such that c < a < 1. By 4.4, St({c}) is a
filter of L. Assume that u /∈ St({c}) and u|u /∈ St({c}). Then u|(c|c) 6= c
and (u|u)|(c|c) 6= c. Since c ≤ u|(c|c) and c ≤ (u|u)|(c|c) from Proposition 2.5
(8), it follows that u|(c|c) = 1 and (u|u)|(c|c) = 1. Thus, u ≤ c and u|u ≤ c
by Proposition 2.5 (7). So, 1 = u|(u|u) = (u|((u|u)|(u|u)))|((u|u)|(u|u)) =
u ∨ (u|u) ≤ c ∨ c = c from Proposition 2.5 (2), (S1)-(S2) and Corollary 2.7.
This is a contradiction with c < 1. Hence, u ∈ St({c}) or u|u ∈ St({c}) which
means that St({c}) is an ultra filter of L.

Theorem 4.7. Let L be a Sheffer stroke BL-algebra and S be a nonempty
subset of L. Then

1. St({0}) = {1} and
2. St({0}) ⊆ P , for all filters P of L.

Proof. It is obtained from Proposition 2.5 (5) and Theorem 4.4.

Definition 4.8. Let L be a Sheffer stroke BL-algebra, S and T be nonempty
subsets of L. Then a stabilizer of S with respect to T is defined as follows:

St(S, T ) = {c ∈ L : c ∨ x ∈ T, ∀x ∈ S}.

Example 4.9. Consider the Sheffer stroke BL-algebra L in Example 2.4.
For the subsets S1 = {d, e} and T1 = {c, f} of L, the stabilizer St(S1, T1) of
S1 with respect to T1 is empty set. Moreover, St(S2, T2) = {1}, for the subsets
S2 = {c, d, e} and T2 = {0, 1} of L.

Theorem 4.10. Let S, T , Si and Ti (i ∈ I) be nonempty subsets and P
be a filter of L. Then

1. St(S, T ) = L implies S ⊆ T ,
2. P ⊆ T if and only if St(P, T ) = L,
3. St(P, P ) = L,
4. St(S) ⊆ St(S, P ),
5. if Si ⊆ Ti and Sj ⊆ Tj , then St(Ti, Sj) ⊆ St(Si, Tj),
6. St(S, {1}) = St(S),
7. St(S,

⋂
i∈I Ti) =

⋂
i∈I St(S, Ti),

8. St(S,
⋃

i∈I Ti) =
⋃

i∈I St(S, Ti),
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9. St(∅, T ) = ∅,
10. St({0}, T ) = T ,
11. St(S, {0}) = ∅ and
12. If S = {0}, then St(S, {0}) = {0}.

Proof. 1. Let St(S, T ) = L. Since c = c ∨ c ∈ T , for all c ∈ S, it is
obtained that c ∈ T . Thus, S ⊆ T .

2. If St(P, T ) = L, then P ⊆ T from (1). Conversely, let P be a filter of L
such that P ⊆ T , and c ∈ L. Then x ≤ c ∨ x, for all x ∈ P . Since P is
a filter of L, it follows from (SF − 2) that c ∨ x ∈ P , and so, c ∨ x ∈ T ,
for all x ∈ P . Thus, c ∈ St(S, T )b which implies St(P, T ) = L.

3. It follows from (2).
4. Let c ∈ St(S). Then c|(x|x) = x, for all x ∈ S. Since c ∨ x =

(c|(x|x))|(x|x) = x|(x|x) = 1 ∈ P from Corollary 2.7, Proposition 2.5
(2) and (SF − 3), respectively, it is obtained that c ∈ St(S, P ), i.e.,
St(S) ⊆ St(S, P ).

5. Let Si ⊆ Ti, Sj ⊆ Tj and c ∈ St(Ti, Sj). Then c ∨ x ∈ Sj , for all
x ∈ Ti. Thus, c ∨ x ∈ Tj , for all x ∈ Si. Hence, c ∈ St(Si, Tj), and so,
St(Ti, Sj) ⊆ St(Si, Tj).

6. Since {1} is a filter of L, it follows from (4) that St(S) ⊆ St(S, {1}).
Let c ∈ St(S, {1}). Then c ∨ x = 1, for all x ∈ S. Since 1 = c ∨ x =
(c|(x|x))|(x|x) from Corollary 2.7, it is obtained from Proposition 2.5
(7)-(8) that c|(x|x) = x, for all x ∈ S. Thus, c ∈ St(S) which implies
St(S, {1}) ⊆ St(S). Therefore, St(S, {1}) = St(S).

7. Let c ∈ St(S,
⋂

i∈I Ti). Then c∨x ∈
⋂

i∈I Ti, for all x ∈ S. Thus, c∨x ∈
Ti, for all i ∈ I and x ∈ S. Hence, c ∈ St(S, Ti), for all i ∈ I, which means
that c ∈

⋂
i∈I St(S, Ti). So, St(S,

⋂
i∈I Ti) ⊆

⋂
i∈I St(S, Ti). Conversely,

let c ∈
⋂

i∈I St(S, Ti). Then c ∈ St(S, Ti), for all i ∈ I, and so, c∨x ∈ Ti,
for all i ∈ I and x ∈ S. Hence, c ∨ x ∈

⋂
i∈I Ti, for all x ∈ S, i.e.,

c ∈ St(S,
⋂

i∈I Ti). Thus,
⋂

i∈I St(S, Ti) ⊆ St(S,
⋂

i∈I Ti).
8. Let c ∈ St(S,

⋃
i∈I Ti). Then c∨x ∈

⋃
i∈I Ti, for all x ∈ S, and so, c∨x ∈

Ti0 , for some i0 ∈ I and all x ∈ S. Thus, c ∈ St(S, Ti0), for some i0 ∈ I.
Hence, c ∈

⋃
i∈I St(S, Ti) which implies St(S,

⋃
i∈I Ti) ⊆

⋃
i∈I St(S, Ti).

Conversely, let c ∈
⋃

i∈I St(S, Ti). Then c ∈ St(S, Ti0), for some i0 ∈
I. So, c∨ x ∈ Ti0 , for some i0 ∈ I and all x ∈ S. Hence, c∨ x ∈

⋃
i∈I Ti,

for all x ∈ S, which means that c ∈ St(S,
⋃

i∈I Ti). Therefore,⋃
i∈I

St(S, Ti) ⊆ St(S,
⋃
i∈I

Ti).

9. St(∅, T ) = {c ∈ L : c ∨ x ∈ T, ∀x ∈ ∅} = ∅.
10. St({0}, T ) = {c ∈ L : c = c ∨ 0 ∈ T} = T .
11. St(S, {0}) = {c ∈ L : c ∨ x = 0, ∀x ∈ S} = ∅.
12. If S = {0}, then St(S, {0}) = {c ∈ L : c = c ∨ 0 = 0} = {0}.
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Theorem 4.11. Let T , S1 and S2 be nonempty subsets of L. Then S1 ⊆
S2 ⇒ St(S2, T ) ⊆ St(S1, T ).

Proof. Let S1 ⊆ S2 and c ∈ St(S2, T ). Then c ∨ x ∈ T , for all x ∈ S2.
Since c ∨ y ∈ T , for all y ∈ S1 ⊆ S2, we get c ∈ St(S1, T ) which means that
St(S2, T ) ⊆ St(S1, T ).

Example 4.12. Consider the Sheffer stroke BL-algebra L in Example 2.4.
For the subsets T = {d, f}, S1 = {a, b} and S2 = {c, e} of L, S1 * S2 when
St(S2, T ) = ∅ ⊆ {d} = St(S1, T ).

Theorem 4.13. Let L be a Sheffer stroke BL-algebra, P and Q be two
filters of L. Then St(P,Q) is a filter of L.

Proof. Let P,Q be two filters of L and c1, c2 ∈ St(P,Q). Then c1 ∨ x ∈ Q
and c2 ∨ x ∈ Q, for all x ∈ P . Since Q is a filter of L, it is obtained from
(SF − 1) that ((c1 ∨ x)|(c2 ∨ x))|((c1 ∨ x)|(c2 ∨ x)) ∈ Q. Since

((c1|c2)|(c1|c2)) ∨ x = (((c1|c2)|(c1|c2))|(x|x))|(x|x)

= (c1|((c2|(x|x))|(c2|(x|x))))|(x|x)

= (c1|((((c2|(x|x))|(x|x))|(x|x))|
(((c2|(x|x))|(x|x))|(x|x))))|(x|x)

= (c1|(((c2 ∨ x)|(x|x))|((c2 ∨ x)|(x|x))))|(x|x)

= (((c1|(c2 ∨ x))|(c1|(c2 ∨ x)))|(x|x))|(x|x)

= ((c1|(c2 ∨ x))|(c1|(c2 ∨ x))) ∨ x

= ((c1|(c2 ∨ x))|(c1|(c2 ∨ x))) ∨ ((((x|x)|(x|x))|((x
|x)|(c2|(x|x))))|(((x|x)|(x|x))|((x|x)|(c2|(x|x)))))

= ((c1|(c2 ∨ x))|(c1|(c2 ∨ x)))vee((x|(c2 ∨ x))|(x|(c2 ∨ x)))

= ((c1 ∨ x)|(c2 ∨ x))|((c1 ∨ x)|(c2 ∨ x)) ∈ Q

from (S1)-(S3), Corollary 2.7, Lemma 2.8 and Proposition 2.5 (14), it follows
that ((c1|c2)|(c1|c2)) ∈ St(P,Q). Also, let c1 ∈ St(P,Q) and c1 ≤ c2. Then
c1 ∨ x ∈ Q, for all x ∈ P . Since c1 ∨ x ≤ c2 ∨ x and Q is a filter of L, we get
c2 ∨ x ∈ Q, for all x ∈ P . Thus, c2 ∈ St(P,Q).

Theorem 4.14. Let L be a Sheffer stroke BL-algebra, P be a filter and Q
be an ultra filter of L. Then St(P,Q) is an ultra filter of L.

Proof. St(P,Q) is a filter of L from Theorem 4.13. Let c1 ∨ c2 ∈ St(P,Q).
Then (c1∨c2)∨x ∈ Q, for all x ∈ P . Since (c1∨x)∨(c2∨x) = (c1∨c2)∨(x∨x) =
(c1 ∨ c2) ∨ x ∈ Q and Q is an ultra filter of L, it is obtained from Lemma 2.14
that c1∨x ∈ Q or c2∨x ∈ Q, for all x ∈ P . Thus, c1 ∈ St(P,Q) or c2 ∈ St(P,Q)
which means that St(P,Q) is an ultra filter of L.
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5. Conclusion

In the present paper, we have studied on new features and results in filters
and stabilizers of Sheffer stroke BL-algebras. After presenting basic definitions
and notions about Sheffer stroke BL-algebra, we investigate new properties of
various filters of a Sheffer stroke BL-algebra and give relationships between
them. Then we define a stabilizer St(S) of a nonempty subset S of a Sheffer
stroke BL-algebra L and show that the stabilizer is a filter of L. Also, it is
proved that a stabilizer St({c}) is an ultra filter of a Sheffer stroke BL-algebra L
where there exist no an element a ∈ L such that c < a < 1. It is demonstrated
that the stabilizer of the subset {0} of a Sheffer stroke BL-algebra is {1}, and
so, it is contained by all filters of this algebraic structure. Besides, a stabilizer
St(S, T ) of S 6= ∅ with respect to T 6= ∅ is described on a Sheffer stroke BL-
algebra L and some properties are presented. Indeed, it is stated that the
stabilizer St(P,Q) is a filter of a Sheffer stroke BL-algebra if P and Q are two
filters of this algebraic structure. Finally, it is shown that St(P,Q) is an ultra
filter of a Sheffer stroke BL-algebra when P is any filter and Q is an ultra filter
of this algebra.

In the future works, we wish to study atoms and branches of Sheffer stroke
BL-algebras.

Acknowledgment: We would like to thank the reviewers for their thoughtful
comments and efforts towards improving our manuscript.
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35100 Ízmir, Turkey.
E-mail: tahsin.oner@ege.edu.tr

Arsham Borumand Saeid
Department of Pure Mathematics, Faculty of Mathematics and Computer,



Stabilizers on Sheffer stroke BL-algebras 97

Shahid Bahonar University of Kerman,
Kerman, Iran.
E-mail: arsham@uk.ac.ir


