DOI QR코드

DOI QR Code

정밀영양: 개인 간 대사 다양성을 이해하기 위한 접근

Precision nutrition: approach for understanding intra-individual biological variation

  • 김양하 (이화여자대학교 식품영양학과)
  • Kim, Yangha (Department of Nutritional Science and Food Management, Ewha Womans University)
  • 투고 : 2022.01.14
  • 심사 : 2022.02.11
  • 발행 : 2022.02.28

초록

In the past few decades, great progress has been made on understanding the interaction between nutrition and health status. But despite this wealth of knowledge, health problems related to nutrition continue to increase. This leads us to postulate that the continuing trend may result from a lack of consideration for intra-individual biological variation on dietary responses. Precision nutrition utilizes personal information such as age, gender, lifestyle, diet intake, environmental exposure, genetic variants, microbiome, and epigenetics to provide better dietary advices and interventions. Recent technological advances in the artificial intelligence, big data analytics, cloud computing, and machine learning, have made it possible to process data on a scale and in ways that were previously impossible. A big data platform is built by collecting numerous parameters such as meal features, medical metadata, lifestyle variation, genome diversity and microbiome composition. Sophisticated techniques based on machine learning algorithm can be used to integrate and interpret multiple factors and provide dietary guidance at a personalized or stratified level. The development of a suitable machine learning algorithm would make it possible to suggest a personalized diet or functional food based on analysis of intra-individual metabolic variation. This novel precision nutrition might become one of the most exciting and promising approaches of improving health conditions, especially in the context of non-communicable disease prevention.

키워드

참고문헌

  1. World Health Organization. Fact sheets, 2020 [Internet]. Geneva: World Health Organization; [cited 2022 Feb 7]. Available from: https://www.who.int/news-room/fact-sheets.
  2. Gardner CD, Trepanowski JF, Del Gobbo LC, Hauser ME, Rigdon J, Ioannidis JP, et al. Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: the DIETFITS randomized clinical trial. JAMA 2018; 319(7): 667-679. https://doi.org/10.1001/jama.2018.0245
  3. Berry SE, Valdes AM, Drew DA, Asnicar F, Mazidi M, Wolf J, et al. Human postprandial responses to food and potential for precision nutrition. Nat Med 2020; 26(6): 964-973. https://doi.org/10.1038/s41591-020-0934-0
  4. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized nutrition by prediction of glycemic responses. Cell 2015; 163(5): 1079-1094. https://doi.org/10.1016/j.cell.2015.11.001
  5. Grillo A, Salvi L, Coruzzi P, Salvi P, Parati G. Sodium intake and hypertension. Nutrients 2019; 11(9): 1970. https://doi.org/10.3390/nu11091970
  6. Cornelis MC, El-Sohemy A, Campos H. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am J Clin Nutr 2007; 86(1): 240-244. https://doi.org/10.1093/ajcn/86.1.240
  7. Galmes S, Serra F, Palou A. Vitamin E metabolic effects and genetic variants: a challenge for precision nutrition in obesity and associated disturbances. Nutrients 2018; 10(12): 1919. https://doi.org/10.3390/nu10121919
  8. Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes 2016; 2(1): 16003. https://doi.org/10.1038/npjbiofilms.2016.3
  9. Kirk D, Catal C, Tekinerdogan B. Precision nutrition: a systematic literature review. Comput Biol Med 2021; 133: 104365. https://doi.org/10.1016/j.compbiomed.2021.104365
  10. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 2014; 42(Database issue): D1001-D1006. https://doi.org/10.1093/nar/gkt1229
  11. Bashiardes S, Godneva A, Elinav E, Segal E. Towards utilization of the human genome and microbiome for personalized nutrition. Curr Opin Biotechnol 2018; 51: 57-63. https://doi.org/10.1016/j.copbio.2017.11.013
  12. Oh DK, Ciaraldi T, Henry RR. Adiponectin in health and disease. Diabetes Obes Metab 2007; 9(3): 282-289. https://doi.org/10.1111/j.1463-1326.2006.00610.x
  13. Heidemann C, Sun Q, van Dam RM, Meigs JB, Zhang C, Tworoger SS, et al. Total and high-molecular-weight adiponectin and resistin in relation to the risk for type 2 diabetes in women. Ann Intern Med 2008; 149(5): 307-316. https://doi.org/10.7326/0003-4819-149-5-200809020-00005
  14. Comuzzie AG, Funahashi T, Sonnenberg G, Martin LJ, Jacob HJ, Black AE, et al. The genetic basis of plasma variation in adiponectin, a global endophenotype for obesity and the metabolic syndrome. J Clin Endocrinol Metab 2001; 86(9): 4321-4325. https://doi.org/10.1210/jc.86.9.4321
  15. Salmenniemi U, Zacharova J, Ruotsalainen E, Vauhkonen I, Pihlajamaki J, Kainulainen S, et al. Association of adiponectin level and variants in the adiponectin gene with glucose metabolism, energy expenditure, and cytokines in offspring of type 2 diabetic patients. J Clin Endocrinol Metab 2005; 90(7): 4216-4223. https://doi.org/10.1210/jc.2004-2289
  16. Filippi E, Sentinelli F, Romeo S, Arca M, Berni A, Tiberti C, et al. The adiponectin gene SNP+276G>T associates with early-onset coronary artery disease and with lower levels of adiponectin in younger coronary artery disease patients (age https://doi.org/10.1007/s00109-005-0667-z
  17. Aller R, Izaola O, Primo D, de Luis DA. The effect of single-nucleotide polymorphisms at the ADIPOQ gene locus rs1501299 on metabolic parameters after 9 mo of a high-protein/low-carbohydrate versus a standard hypocaloric diet. Nutrition 2019; 65: 44-49. https://doi.org/10.1016/j.nut.2019.02.012
  18. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 2015; 160(3): 447-460. https://doi.org/10.1016/j.cell.2015.01.002
  19. Zhu A, Sunagawa S, Mende DR, Bork P. Inter-individual differences in the gene content of human gut bacterial species. Genome Biol 2015; 16(1): 82. https://doi.org/10.1186/s13059-015-0646-9
  20. Tomas-Navarro M, Vallejo F, Sentandreu E, Navarro JL, Tomas-Barberan FA. Volunteer stratification is more relevant than technological treatment in orange juice flavanone bioavailability. J Agric Food Chem 2014; 62(1): 24-27. https://doi.org/10.1021/jf4048989
  21. Meyer KA, Bennett BJ. Diet and gut microbial function in metabolic and cardiovascular disease risk. Curr Diab Rep 2016; 16(10): 93. https://doi.org/10.1007/s11892-016-0791-x
  22. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 2016; 133(2): 187-225. https://doi.org/10.1161/CIRCULATIONAHA.115.018585
  23. Levy M, Thaiss CA, Zeevi D, Dohnalova L, Zilberman-Schapira G, Mahdi JA, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 2015; 163(6): 1428-1443. https://doi.org/10.1016/j.cell.2015.10.048
  24. Korem T, Zeevi D, Zmora N, Weissbrod O, Bar N, Lotan-Pompan M, et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab 2017; 25(6): 1243-1253.e5. https://doi.org/10.1016/j.cmet.2017.05.002
  25. Snijders C, Matzat U, Reips UD. "Big Data": big gaps of knowledge in the field of internet science. Int J Internet Sci 2012; 7(1): 1-5.
  26. Laney D. 3D data management: controlling data volume, velocity, and variety. Stamford (CT): META Group Inc.; 2001.
  27. Dedic N, Stanier C. Towards differentiating business intelligence, big data, data analytics and knowledge discovery. In: Piazolo F, Geist V, Brehm L, Schmidt R, editors. Innovations in Enterprise Information Systems Management and Engineering. ERP Future 2016. Lecture Notes in Business Information Processing. New York (NY): Springer; 2016, p.114-122.
  28. Shukla SK, Murali NS, Brilliant MH. Personalized medicine going precise: from genomics to microbiomics. Trends Mol Med 2015; 21(8): 461-462. https://doi.org/10.1016/j.molmed.2015.06.002
  29. Bi Q, Goodman KE, Kaminsky J, Lessler J. What is machine learning? A primer for the epidemiologist. Am J Epidemiol 2019; 188(12): 2222-2239.
  30. L'heureux A, Grolinger K, Elyamany HF, Capretz MA. Machine learning with big data: challenges and approaches. IEEE Access 2017; 5: 7776-7797. https://doi.org/10.1109/ACCESS.2017.2696365
  31. Ayodele TO. Types of machine learning algorithms. In: Zhang Y, editor. New Advances in Machine Learning. London: IntechOpen; 2010. p.19-48.