과제정보
The authors sincerely thank A. Kim and J.Y Lee for their assistance with animal care and sample analysis.
참고문헌
- Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 281(7285): 785-789. https://doi.org/10.1016/S0140-6736(63)91500-9
- Chavez JA, Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 2003; 419(2): 101-109. https://doi.org/10.1016/j.abb.2003.08.020
- Li LO, Grevengoed TJ, Paul DS, Ilkayeva O, Koves TR, Pascual F, et al. Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis. Diabetes 2015; 64(1): 23-35. https://doi.org/10.2337/db13-1070
- Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 1997; 46(6): 983-988. https://doi.org/10.2337/diabetes.46.6.983
- Ellis BA, Poynten A, Lowy AJ, Furler SM, Chisholm DJ, Kraegen EW, et al. Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle. Am J Physiol Endocrinol Metab 2000; 279(3): E554-E560. https://doi.org/10.1152/ajpendo.2000.279.3.e554
- Lillioja S, Young AA, Culter CL, Ivy JL, Abbott WG, Zawadzki JK, et al. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest 1987; 80(2): 415-424. https://doi.org/10.1172/JCI113088
- Kriketos AD, Pan DA, Lillioja S, Cooney GJ, Baur LA, Milner MR, et al. Interrelationships between muscle morphology, insulin action, and adiposity. Am J Physiol 1996;270(6 Pt 2): R1332-R1339.
- Rocchi A, Milioto C, Parodi S, Armirotti A, Borgia D, Pellegrini M, et al. Glycolytic-to-oxidative fiber-type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high-fat diet. Acta Neuropathol 2016; 132(1): 127-144. https://doi.org/10.1007/s00401-016-1550-4
- Philippi M, Sillau AH. Oxidative capacity distribution in skeletal muscle fibers of the rat. J Exp Biol 1994; 189: 1-11. https://doi.org/10.1242/jeb.189.1.1
- Donnelly R, Reed MJ, Azhar S, Reaven GM. Expression of the major isoenzyme of protein kinase-C in skeletal muscle, nPKC theta, varies with muscle type and in response to fructose-induced insulin resistance. Endocrinology 1994; 135(6): 2369-2374. https://doi.org/10.1210/en.135.6.2369
- Mullen KL, Pritchard J, Ritchie I, Snook LA, Chabowski A, Bonen A, et al. Adiponectin resistance precedes the accumulation of skeletal muscle lipids and insulin resistance in high-fat-fed rats. Am J Physiol Regul Integr Comp Physiol 2009; 296(2): R243-R251. https://doi.org/10.1152/ajpregu.90774.2008
- Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 2001; 86(12): 5755-5761. https://doi.org/10.1210/jc.86.12.5755
- Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 2001; 98(4): 2005-2010. https://doi.org/10.1073/pnas.98.4.2005
- Dyck DJ, Peters SJ, Glatz J, Gorski J, Keizer H, Kiens B, et al. Functional differences in lipid metabolism in resting skeletal muscle of various fiber types. Am J Physiol 1997;272(3 Pt 1): E340-E351.
- Levin MC, Monetti M, Watt MJ, Sajan MP, Stevens RD, Bain JR, et al. Increased lipid accumulation and insulin resistance in transgenic mice expressing DGAT2 in glycolytic (type II) muscle. Am J Physiol Endocrinol Metab 2007; 293(6): E1772-E1781. https://doi.org/10.1152/ajpendo.00158.2007
- Jung YH, Bu SY. Suppression of long chain acyl-CoA synthetase blocks intracellular fatty acid flux and glucose uptake in skeletal myotubes. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865(7): 158678. https://doi.org/10.1016/j.bbalip.2020.158678
- Lee JY, Kim A, Jung YH. Dissociation of systemic glucose homeostasis from triacylglyceride accumulation by reduced Acsl6 expression in skeletal muscle. Biotechnol Bioprocess Eng 2018; 23(4): 465-472. https://doi.org/10.1007/s12257-018-0261-1
- Bu SY, Mashek DG. Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J Lipid Res 2010; 51(11): 3270-3280. https://doi.org/10.1194/jlr.M009407
- Mashek DG, Li LO, Coleman RA. Long-chain acyl-CoA synthetases and fatty acid channeling. Future Lipidol 2007; 2(4): 465-476. https://doi.org/10.2217/17460875.2.4.465
- Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37(8): 911-917. https://doi.org/10.1139/o59-099
- Coleman RA. It takes a village: channeling fatty acid metabolism and triacylglycerol formation via protein interactomes. J Lipid Res 2019; 60(3): 490-497. https://doi.org/10.1194/jlr.s091843
- Galante P, Mosthaf L, Kellerer M, Berti L, Tippmer S, Bossenmaier B, et al. Acute hyperglycemia provides an insulin-independent inducer for GLUT4 translocation in C2C12 myotubes and rat skeletal muscle. Diabetes 1995; 44(6): 646-651. https://doi.org/10.2337/diabetes.44.6.646
- Kahn CR, Crettaz M. Insulin receptors and the molecular mechanism of insulin action. Diabetes Metab Rev 1985; 1(1-2): 5-32. https://doi.org/10.1002/dmr.5610010103
- Zierath JR, Hawley JA. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2004; 2(10): e348. https://doi.org/10.1371/journal.pbio.0020348
- Armstrong RB, Phelps RO. Muscle fiber type composition of the rat hindlimb. Am J Anat 1984; 171(3): 259-272. https://doi.org/10.1002/aja.1001710303
- Marabita M, Baraldo M, Solagna F, Ceelen JJ, Sartori R, Nolte H, et al. S6K1 is required for increasing skeletal muscle force during hypertrophy. Cell Reports 2016; 17(2): 501-513. https://doi.org/10.1016/j.celrep.2016.09.020
- Hay N. Interplay between FOXO, TOR, and Akt. Biochim Biophys Acta 2011; 1813(11): 1965-1970. https://doi.org/10.1016/j.bbamcr.2011.03.013
- Soliman GA, Acosta-Jaquez HA, Dunlop EA, Ekim B, Maj NE, Tee AR, et al. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J Biol Chem 2010; 285(11): 7866-7879. https://doi.org/10.1074/jbc.M109.096222
- Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, et al. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 2004; 279(39): 41114-41123. https://doi.org/10.1074/jbc.M400674200
- Azad M, Khaledi N, Hedayati M. Effect of acute and chronic eccentric exercise on FOXO1 mRNA expression as fiber type transition factor in rat skeletal muscles. Gene 2016; 584(2): 180-184. https://doi.org/10.1016/j.gene.2016.02.033
- Kleinert M, Sylow L, Fazakerley DJ, Krycer JR, Thomas KC, Oxboll AJ, et al. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo. Mol Metab 2014; 3(6): 630-641. https://doi.org/10.1016/j.molmet.2014.06.004
- Shimkus KL, Jefferson LS, Gordon BS, Kimball SR. Repressors of mTORC1 act to blunt the anabolic response to feeding in the soleus muscle of a cast-immobilized mouse hindlimb. Physiol Rep 2018; 6(20): e13891. https://doi.org/10.14814/phy2.13891
- Song XM, Kawano Y, Krook A, Ryder JW, Efendic S, Roth RA, et al. Muscle fiber type-specific defects in insulin signal transduction to glucose transport in diabetic GK rats. Diabetes 1999; 48(3): 664-670. https://doi.org/10.2337/diabetes.48.3.664
- Krook A, Kawano Y, Song XM, Efendic S, Roth RA, Wallberg-Henriksson H, et al. Improved glucose tolerance restores insulin-stimulated Akt kinase activity and glucose transport in skeletal muscle from diabetic Goto-Kakizaki rats. Diabetes 1997; 46(12): 2110-2114. https://doi.org/10.2337/diabetes.46.12.2110
- Li LO, Ellis JM, Paich HA, Wang S, Gong N, Altshuller G, et al. Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition. J Biol Chem 2009; 284(41): 27816-27826. https://doi.org/10.1074/jbc.M109.022467
- Van Horn CG, Caviglia JM, Li LO, Wang S, Granger DA, Coleman RA. Characterization of recombinant long-chain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 2005; 44(5): 1635-1642. https://doi.org/10.1021/bi047721l
- van Putten JP, Krans HM. Glucose as a regulator of insulin-sensitive hexose uptake in 3T3 adipocytes. J Biol Chem 1985; 260(13): 7996-8001. https://doi.org/10.1016/S0021-9258(17)39553-4