DOI QR코드

DOI QR Code

Antimicrobial Effects of 5-Aminolevulinic Acid Mediated Photodynamic Therapy against Pathogenic Bacteria

병원성세균에 대한 5-Aminolevulinic Acid로 중재된 광역학치료의 항균효과

  • Pil Seung, Kwon (Department of Clinical Laboratory Science, Wonkwang Health Science University)
  • 권필승 (원광보건대학교 임상병리과)
  • Received : 2022.11.07
  • Accepted : 2022.11.22
  • Published : 2022.12.31

Abstract

This study evaluates the improved effect of photodynamic therapy (PDT) by subjecting pathogenic bacteria to a combination of 630 nm light-emitting diode (LED) and 5-aminolevulinic acid (ALA). Bacterial suspensions of 1.5×104 cells/mL were diluted and exposed to ALA concentrations of 10, 5, 2.5, 1.25, and 0.625 mg/mL, incubated for 30 minutes, followed by irradiation with 630 nm LED (18 J/cm2 ). The non-irradiated P. aeruginosa group and the group administered only LED light averaged 415 and 245 colonies, respectively. Conversely, the PDT group showed an average of 109, 225, 297, and 285 colonies at concentrations of 10, 5, 2.5, and 1.25 mg/mL of ALA. Evaluating the effect on E. faecalis revealed an average of 8,750 and 8,000 colonies in the group that did not receive the control photosensitizer and the group exposed to light alone, respectively. However, an average of 0, 2350, 4825, and 7475 colonies at concentrations of 5, 2.5, 1.25, and 0.625 mg/mL ALA were determined for the PDT groups. In conclusion, better inhibitory effects were observed for E. faecalis than for P. aeruginosa. Moreover, our results validate the possibility of improved PDT efficacy using a combination of ALA and 630 nm LED.

본 연구의 목적은 630 nm light emitting diode (LED)와 광감작제인 5-aminolevulinic acid (ALA)를 이용하여 병원균에 대한 광역학치료의 효과를 평가하는 것이었다. 1.5×104 cells/mL의 세균 현탁액을 ALA 농도의 10, 5, 2.5, 1.25, 0.625 mg/mL로 희석하여 30분간 배양 후 LED (energy density 18 J/cm2 )빛을 조사하였다 그 결과는 P. aeruginosa 에서는 광감작제를 처리하지 않은 군과 LED 빛만을 쬔 것은 각 평균 415, 245개가 형성되었다. 이에 반해 광역학 치료군인 ALA의 농도 10, 5, 2.5, 1.25 mg/mL에서 평균 109, 225, 297, 285개의 집락이 형성되었다. E. faecalis에서는 대조군인 광감작제를 처리하지 않은 군은 평균 8,750개의 집락을 형성하였고 빛만 쬔 군은 평균 8,000개의 집락을 형성하였다. 이에 반해 광역학 치료군인 ALA의 농도 5, 2.5, 1.25, 0.625 mg/mL 에서 평균 0, 2350, 4825, 7475개의 집락이 형성되었다. 결론적으로 그람음성균이 P. aeruginosa 보다 E. faecalis에서 더 좋은 광역학 치료효과를 보였으며, ALA와 630 nm LED를 이용한 광역학 치료의 가능성을 증명하였다.

Keywords

Acknowledgement

This paper was supported by Wonkwang Health Science University in 2021.

References

  1. Castano AP, Deminova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther. 2004;4:279-293. https://doi.org /10.1016/S1572-1000(05)00007-4
  2. Ochsner M. New trends in photo biology of photophysical and photobiological processes in the photodynamic therapy of tumors. Photochem Photobiol. 1997;39:1-18. https://doi.org/10.1016/S1011-1344(96)07428-3
  3. Mang TS. Lasers and light sources for PDT: past, present and future. Photodiagnosis Photodynamic Therapy. 2004;1:43-48. https://doi.org/10.1016/S1572-1000(04)00012-2
  4. Machado AEH. Photodynamic therapy: principles, potential of application and perspectives. Quimica Nova. 2000;23:237-243. https://doi.org/10.1590/S0100-40422000000200015
  5. Wainwright M, Phoenix DA, Laycock SL, Wareing DR, Wright PA. Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus. FEMS Microbiol Lett. 1998;15:177-181. https://doi.org/10.1111/j.1574-6968.1998.tb12908.x
  6. Raab C. Ber die wirkung fluoreszierender stoffe auf infusoria. Z Biol. 1900;39:524-646.
  7. Hamblin MR, Hasan T. Photodynamic theraphy: a new antimicrobial approach to infectious disease?. J Photochem Photobial B. 2004;3:436-450. https://doi.org/10.1039/b311900a
  8. Harris F, Pierpoint L. Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial agent. Med Res Rev. 2012;32:1292-1327. https://doi.org/10.1002/med.20251
  9. Shi H, Li J, Zhang H, Zhang J, Sun H. Effect of 5-aminolevulinic acid photodynamic therapy on Candida albicans biofilms: an in vitro study. Photodiagnosis Photodyn Ther. 2016;15:40-45. https://doi.org/10.1016/j.pdpdt.2016.04.011
  10. Konopka K, Goslinski T. Photodynamic therapy in dentistry. J Dent Res. 2007;86:694-707. https://doi.org/10.1177/154405910708600803
  11. Fernandes T, Bhavsar C, Sawarkar S, D'souza A. Current and novel approaches for control of dental biofilm. Int J Pharm. 2018;536:199-210. https://doi.org/10.1016/j.ijpharm.2017.11.019
  12. D'Ercole S, Spoto G, Trentini P, Tripodi D, Petrini M. In vitro inactivation of Enterococcus faecalis with a LED device. J. Photochem. Photobiol B Biol. 2016;160:172-177. https://doi.org/10.1016/j.jphoto biol .2016.04.015
  13. D'Ercole S, Di Fermo P, Di Giulio M, Di Lodovico S, Di Campli E, Scarano A, et al. Near infrared NIR irradiation and sodium hypochlorite: an efficacious association to counteract the Enterococcus faecalis biofilm in endodontic infections. J Photochem Photobiol B Biol. 2020;210:111989. https://doi.org/ 10.1016/j.jphotobiol.2020.111989
  14. Petrini M, Spoto G, Scarano A, D'Arcangelo C, Tripodi D, Di Fermo, et al. Near-infrared LEDS provide persistent and increasing protection against E. faecalis. J Photochem Photobiol B Biol. 2019;197:111527. https://doi.org/10.1016/j.jphotobiol.2019.111527
  15. Cieplik F, Buchalla W, Hellwig E, Al-Ahmad A, Hiller KA, Maisch T, et al. Antimicrobial photodynamic therapy as an adjunct for treatment of deep carious lesions-A systematic review. Photodiagnosis Photodyn. Ther. 2017;18:54-62. https://doi.org/10.1016/j.pdpdt.2017.01.005
  16. Vatansever F, De Melo WC, Avci P, Vecchio D, Sadasivam M, Gupta A, et al. Antimicrobial strategies centered around reactive oxygen species-bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev. 2013;37:955-989. https://doi.org/10.1111/1574-6976.12026
  17. Morrison AJ, Wenzel RP. Epidemiology of infection due to Pseudomonas aeruginosa. Rev Infect Dis. 1984; 6:627-642. https://doi.org/10.1093/clinids/6.Supplement_3.S627
  18. National Nosocomial Infection Surveillance System. National Nosocomial Infection Surveillance (NNIS) System report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32:470-485. https://doi.org/10.1016/s0196655304005425
  19. Leclercq R, Derlot E, Duval J, Courvalin P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med. 1988;319:157-161. https://doi.org/10.1056/nejm198807213190307
  20. Moghissi K, Dixon K, Gibbins S. Does PDT have potential in the treatment of COVID 19 patients?. Photodiagnosis Photodyn Ther. 2020;31:101889. https://doi.org/10.1016/j.pdpdt.2020.101889
  21. Tan Y, Cheng Q, Yang H, Li H, Gong N, Liu D, et al. Effects of ALA-PDT on biofilm structure, virulence factor secretion, and QS in Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther. 2018;24:88-94. https://doi.org/10.1016/j.pdpdt.2018.07.005
  22. Rai R, Natarajan K. Laser and light based treatments of acne. Indian J Dermatol Venereol Leprol. 2013;79: 300-309. https://doi.org/10.4103/0378-6323.110755
  23. Kwon PS. The effects of photodynamic therapy for vancomycin-resistant Enterococci. Korean J Clin Lab Sci. 2011;43:124-132.
  24. Nitzan Y, Gutterman M, Malik Z, Ehrenberg B. Inactivation of gram-negative bacteria by photosensitied porphyrins. J Photochem Photobiol. 1992;55:89-96. https://doi.org/10.1111/j.1751-1097.1992.tb04213.x
  25. Fotinos N, Convert M, Piffaretti JC, Gurny R, Lange N. Effects on gram-negative and gram-positive bacteria mediated by 5-aminolevulinic acid and 5-aminolevulinic acid derivatives. Antimicrob Agents Chemother. 2008;52:1366-1373. https://doi.org/10.1128/AAC.01372-07