DOI QR코드

DOI QR Code

Complete Mitochondrial Genome of the Gypsy Moth, Lymantria dispar (Lepidoptera: Erebidae)

매미나방의 미토콘드리아 게놈 분석

  • Na Ra, Jeong (Department of Plant Medicine and Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Youngwoo, Nam (Forest Entomology and Pathology Division, National Institute of Forest Science) ;
  • Wonhoon, Lee (Institute of Agriculture and Life Science, Gyeongsang National University)
  • 정나라 (경상대학교 식물의학과) ;
  • 남영우 (국립산림과학원 산림병해충연구과) ;
  • 이원훈 (경상대학교 농생명과학연구소)
  • Received : 2022.08.15
  • Accepted : 2022.08.23
  • Published : 2022.09.01

Abstract

The Gypsy moth, Lymantria dispar (Linnaeus, 1758) (Lepidoptera: Erebidae) is a serious pest that attacks forest as well as fruit trees. We sequenced the 15,548 bp long complete mitochondrial genome (mitogenome) of this species. It consists of a typical set of genes (13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes) and one major non-coding A + T-rich region. The orientation and gene order of the L. dispar mitogenome are identical to that of the ancestral type found in majority of the insects. Phylogenetic analyses using concatenated sequences of 13 PCGs and 2 rRNAs (13,568 bp including gaps) revealed that the L. dispar examined in our study, together with other geographical samples of L. dispar in a group forming the family Erebidae and consistently supported the monophyly of each family (Erebidae, Euteliidae, Noctuidae, Nolidae and Notodontidae), generally with the highest nodal supports.

매미나방은 산림과 과수에 심각한 피해를 입히는 해충이다. 본 연구에서는 국내 매미나방의 미토콘드리아 게놈(15,548 bp)을 분석하였다. 13개의 PCG와 2개의 rRNA를 연결한 서열(13,568 bp)을 사용한 23개의 미토콘드리아 게놈의 계통분석 결과, 분석한 매미나방은 다른 지역의 매미나방과 같은 과에 속하며 각각의 과(Erebidae, Euteliidae, Noctuidae, Nolidae, Notodontidae)들은 높은 노드수치로 단계통을 형성하였다.

Keywords

Acknowledgement

This study was supported by the National Institute of Forest Science (project No.: FE0703-2022-01), Korea.

References

  1. Bogdanowicz, S.M., Mastro, V.C., Prasher, D.C., Harrison, R.G., 1997. Microsatellite DNA variation among Asian and North American gypsy moths (Lepidoptera: Lymantridae). Syst. 90, 768-775.
  2. Bogdanowicz, S.M., Schaefer, P.W., Harrison, R.G., 2000. Mitochondrial DNA variation among worldwide populations of gypsy moths, Lymantria dispar. Mol. Phylogenetics Evol. 15, 487-495. https://doi.org/10.1006/mpev.1999.0744
  3. Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  4. Djoumad, A., Nisole, A., Zahiri, R., Freschi, L., Picq, S., GundersenRindal, D.E., Sparks, M.E., Dewar, K., Stewart, D., Maaroufi, H., Levesque, R.C., Hamelin, R.C., Cusson, M., 2017. Comparative analysis of mitochondrial genomes of geographic variants of the gypsy moth, Lymantria dispar, reveals a previously undescribed genotypic entity. Sci. Rep. 7, 1-12. https://doi.org/10.1038/s41598-016-0028-x
  5. Galarza, J.A., Mappes, J., 2021. The complete mitochondrial genome of the wood tiger moth (Arctia plantaginis) and phylogenetic analyses within Arctiinae. Mitochondrial DNA B: Resour. 6, 2171-2173. https://doi.org/10.1080/23802359.2021.1945965
  6. Jeong, N.R., Kim, M.J., Park, J.S., Jeong, S.Y., Kim, I., 2021. Complete mitochondrial genomes of Conogethes punctiferalis and C. pinicolalis (Lepidoptera: Crambidae): Genomic comparison and phylogenetic inference in Pyraloidea. J. Asia-Pac. Entomol. 24, 1179-1186. https://doi.org/10.1016/j.aspen.2021.10.014
  7. Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. https://doi.org/10.1093/molbev/mst010
  8. Lanfear, R., Calcott, B., Kainer, D., Mayer, C., Stamatakis, A., 2014. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 14, 82. https://doi.org/10.1186/1471-2148-14-82
  9. Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., Calcott, B., 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772-773.
  10. Linnaeus, C., 1758. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genrea, Species, cum Characteribus, Differentiis, Synonymis, Locis. Tomis I, 10th ed., Laurentii Slavii, Homiae.
  11. Lowe, S., Browne, M., Boudjelas, S., De Poorter, M., 2000. 100 of the world's worst invasive alien species: a selection from the Global Invasive Species Database, Invasive Species Specialist Group (ISSG), Species Survival Commission (SSC), World Conservation Union (IUCN), Auckland.
  12. Luo, Q., Zhou, N., Yang, Z., 2021. Complete mitochondrial genome of Ostrinia kasmirica (Lepidoptera: Crambidae). Mitochondrial DNA B: Resour. 6, 2316-2318.
  13. Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computational Environment Workshop (GCE). pp. 1-8.
  14. Park, J., Xi, H., Kwon, W., Park, C.G., Lee, W., 2019. The complete mitochondrial genome sequence of Korean Chilo suppressalis (Walker, 1863) (Lepidoptera: Crambidae). Mitochondrial DNA B: Resour. 4, 850-851.
  15. Pogue, M.G., Schaefer, P.W., 2007. A review of selected species of Lymantria (Hubner [1819]) (Lepidoptera: Noctuidae: Lymantriinae) from subtropical and temperate regions of Asia including the description of three new species, some potentially invasive to North America, USDA, Washington, D.C.
  16. Ronquist, F., Teslenko, M., Mark, P., Daniel, L., Ayres, Darling, A., Hohna, S., Laget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. https://doi.org/10.1093/sysbio/sys029
  17. Sun, Q.Q., Sun, X.Y., Wang, X.C., Gai, Y.H., Hu, J., Zhu, C.D., Hao, J.S., 2012. Complete sequence of the mitochondrial genome of the Japanese buff-tip moth, Phalera flavescens (Lepidoptera: Notodontidae). Genet. Mol. Res. 11, 4213-4225. https://doi.org/10.4238/2012.September.10.2
  18. USDA, 2016. Pest Alert - Asian Gypsy Moth. APHIS 81-35-027 leaflet. USDA Animal and Plant Health Inspection Service, https://www.aphis.usda.gov/publications/plant_health/content/printable_version/fs_phasiangm.pdf (accessed on 8 August, 2022).
  19. Wernersson, R., Pedersen, A.G., 2003. RevTrans - Constructing alignments of coding DNA from aligned amino acid sequences. Nuc. Acids Res. 31, 3537-3539. https://doi.org/10.1093/nar/gkg609
  20. Yang, M., Song, L., Shi, Y., Yin, Y., Wang, Y., Zhang, P., Chen, J., Lou, L., Liu, X., 2019. The complete mitochondrial genome of a medicinal insect, Hydrillodes repugnalis (Lepidoptera: Noctuoidea: Erebidae), and related phylogenetic analysis. Int. J. Biol. Macromol. 123, 485-493. https://doi.org/10.1016/j.ijbiomac.2018.10.149
  21. Yang, X., Cameron, S.L., Lees, D.C., Xue, D., Han, H., 2015. A mitochondrial genome phylogeny of owlet moths (Lepidoptera: Noctuoidea), and examination of the utility of mitochondrial genomes for lepidopteran phylogenetics. Mol. Phylogenet. Evol. 85, 230-237. https://doi.org/10.1016/j.ympev.2015.02.005
  22. Zhu, X.Y., Xin, Z.Z., Liu, Y., Wang, Y., Huang, Y., Yang, Z.H., Chu, X.H., Zhang, D.Z., Zhang, H.Z., Zhou, C.L., Wang, J.L., Tang, B.P., Liu, Q.N., 2018. The complete mitochondrial genome of Clostera anastomosis (Lepidoptera: Notodontidae) and implication for the phylogenetic relationships of Noctuoidea species. Int. J. Biol. Macromol. 118, 1574-1583. https://doi.org/10.1016/j.ijbiomac.2018.06.188