DOI QR코드

DOI QR Code

Effects of Temperature on the Development and Reproduction of Matsumuraeses falcana (Lepidoptera: Tortricidae)

어리팥나방(Matsumuraeses falcana)의 발육과 생식에 미치는 온도의 영향

  • Jeong Joon, Ahn (Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science) ;
  • Eun Young, Kim (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Bo Yoon, Seo (Crop Foundation Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jin Kyo, Jung (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration)
  • 안정준 (국립원예특작과학원 온난화대응농업연구소) ;
  • 김은영 (국립식량과학원 재배환경과) ;
  • 서보윤 (국립식량과학원 기초기반과) ;
  • 정진교 (국립식량과학원 재배환경과)
  • Received : 2022.04.24
  • Accepted : 2022.07.01
  • Published : 2022.09.01

Abstract

The soybean podborer, Matsumuraeses falcana (Lepidoptera: Tortricidae), is one of important pests in soybean crop. In the purpose of forecasting population dynamics of M. falcana, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of Matsumuraeses falcana at seven constant temperatures of 10, 13, 19, 22, 25, 28, and 31℃. Eggs hatched successfully at all temperature subjected. M. falcana developed from egg hatching to adult emergence at the tested temperatures except 10, 13, and 31℃. The developmental period of each life stage and adult longevity of M. falcana decreased as temperature increased. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of M. falcana were estimated by linear regression as 10.2℃ and 492.04DD, respectively. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. TL and TH from egg hatching to adult emergence using SSI model were 16.7℃ and 29.1℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of M. falcana was 12.4℃. We constructed the adult oviposition model of M. falcana using adult survivorship and fecundity. Temperature-dependent immature development and adult oviposition models will help constructing the population model of M. falcana and developing the strategies of integrated pest management in soybean fields.

어리팥나방은 콩을 가해하는 Matsumuraeses속 해충으로 알려져 있다. 본 연구는 어리팥나방의 개체군동태를 예측하기 위하여 발육단계별 발육기간, 성충의 수명과 번식능력을 10, 13, 19, 22, 25, 28, 31℃ 항온조건에서 조사하였다. 알은 조사된 모든 항온조건에서 부화하였고, 유충은 10, 13, 31℃를 제외한 온도조건에서 성공적으로 성충으로 발육하였다. 발육단계별 발육기간과 성충 수명은 온도가 상승할수록 감소하였다. 어리팥나방 발육단계별 발육영점온도와 유효적산일은 선형회귀방법을 이용하여 추정하였고 발육최저, 최고한계는 LRF와 SSI모델을 이용하여 계산하였다. 1령 유충 부화부터 성충출현까지의 발육영점온도와 유효적산일은 10.2℃와 492.04DD였다. SSI모델을 이용한 부화부터 성충출현까지 발육최저 및 최고온도는 16.7℃과 29.1℃였고 이들간의 차이 즉 발육적정온도범위는 12.4℃였다. 온도와 관련된 어리팥나방 성충의 생존과 산란특성을 이용하여 산란모형을 작성하였다. 본 연구에서 제시한 온도발육모형과 산란모형은 어리팥나방의 개체군모형 작성과 콩 작물의 종합적인 해충군관리체계 확립에 기여할 것으로 보인다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 어젠다 연구과제(PJ01527801)를 수행하는 과정에서 얻은 결과를 바탕으로 작성되었다.

References

  1. Ahn, J.J., Choi, K.S., Koh, S., 2019a. Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae). Appl. Entomol. Zool. 54, 63-74. https://doi.org/10.1007/s13355-018-0593-5
  2. Ahn, J.J., Choi, K.S., Koh, S., 2019b. Using viable eggs to determine oviposition models and life table analysis of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae). Korean J. Appl. Entomol. 58, 111-120. https://doi.org/10.5656/KSAE.2019.04.1.063
  3. Awmack, C.S., Leather, S.R., 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817-844. https://doi.org/10.1146/annurev.ento.47.091201.145300
  4. Berger, D., Walters, R., Gotthard, K., 2008. What limits insect fecundity? Body size and temperature-dependent egg maturation and oviposition in a butterfly. Functional Ecology 22, 523-529. https://doi.org/10.1111/j.1365-2435.2008.01392.x
  5. Bochdanovits, Z., de Jong G., 2003. Experimental evolution in Drosophila melanogaster: interaction of temperature and food quality selection regimes. Evolution 57, 1829-1836. https://doi.org/10.1111/j.0014-3820.2003.tb00590.x
  6. Braby, M.F., Jones, R.E., 1995. Reproductive patterns and resource allocation in tropical butterflies: influence of adult diet and seasonal phenotype on fecundity, longevity and egg size. Oikos 72, 189-204. https://doi.org/10.2307/3546221
  7. Briere, J.F., Pracros, P., Le Roux, L.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29. https://doi.org/10.1093/ee/28.1.22
  8. Byun, B-.K., Park, K-.T., Park, Y-.M., 2005. Review of genus Matsumuraeses Issiki (Lepidoptera, Tortricidae) with discovery of M. falcana (Walsingham) in Korea. J. Asia-Pacific Entomol. 8, 117-122. https://doi.org/10.1016/S1226-8615(08)60080-1
  9. Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Mackauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438. https://doi.org/10.2307/2402197
  10. Cheng, Y.X., Luo, L.Z., Jiang, X.F., Sappington, T.W., 2012. Synchronized oviposition triggered by migratory flight intensifies larval outbreaks of beet webworm. PLoS ONE 7, e31562. https://doi.org/10.1371/journal.pone.0031562
  11. Cho, J.R., Choi, K.S., Jung, J.K., Park, J.H., Seo, B.Y., 2007. Development of sex pheromone trap for monitoring Matsumuraeses falcana (Walshingham) (Lepidoptera: Tortricidae). J. Asia-Pacific. Entomol. 10, 345-349. https://doi.org/10.1016/S1226-8615(08)60374-X
  12. Fand, B.B., Sul, N.T., Bal, S.K., Minhas, P.S., 2015. Temperature impacts the development and survival of common cutworm (Spodoptera litura): simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLOS ONE 10, e0124682. https://doi.org/10.1371/journal.pone.0124682
  13. Gu, H., Hughes, J., Dorn, S., 2006. Trade-off between mobility and fitness in Cydia pomonella L. (Lepidoptera: Tortricidae). Ecol. Entomol. 31, 68-74. https://doi.org/10.1111/j.0307-6946.2006.00761.x
  14. Heo, H.J., Son, Y.R., Seo, B.Y., Jung, J.K., Kim, Y., 2009. A molecular marker discriminating the soybean podworm, Matsumuraeses phaseoli and the podborer, M. falcana (Lepidoptera: Tortricidae). Korean J. Appl. Entomol. 48, 547-551. https://doi.org/10.5656/KSAE.2009.48.4.547
  15. Honek, A., 1996. Geographical variation in thermal requirements for insect development. Eur. J. Entomol. 93, 303-312.
  16. Ikemoto, T., 2005. Intrinsic optimum temperature for development of insects and mites. Environ. Entomol. 34, 1377-1387. https://doi.org/10.1603/0046-225X-34.6.1377
  17. Jandel Scientific, 1994. Tablecurve user's manual san rafael, CA.
  18. Jiang, X.F., Luo, L.Z., Sappington, T.W., 2010. Relationship of flight and reproduction in beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), a migrant lacking the oogenesis-flight syndrome. J. Insect Physiol. 56, 1631-1637. https://doi.org/10.1016/j.jinsphys.2010.06.006
  19. Jung, J.K., Seo, B.Y., Cho, J.R., 2014. Development of Matsumuraeses phaseoli (Lepidoptera: Tortricidae) reared on an artificial diet under outdoor conditions and its over-wintering stage. Korean J. Appl. Entomol. 53, 287-293. https://doi.org/10.5656/KSAE.2014.04.0.014
  20. Jung, J.K., Seo, B.Y., Cho, J-.R., Kwon, Y-.H., Kim, G-.H., 2009. Occurrence of lepidopteran insect pests and injury aspects in adzuki bean fields. Korean J. Appl. Entomol. 48, 29-35. https://doi.org/10.5656/KSAE.2009.48.1.029
  21. Jung, J.K., Seo, B.Y., Park, J.H., Moon, J.-K., Choi, B.-S., Lee, Y.-H., 2007. Developmental characteristics of soybean podworm, Matsumuraeses phaseoli (Lepidoptera: Tortricidae) and legume pod borer, Maruca vitrata (Lepidoptera: Pyralidae) on semi-synthetic artificial diets. Korean J. Appl. Entomol. 46, 393-399. https://doi.org/10.5656/KSAE.2007.46.3.393
  22. Karimi-Malati, A., Fathipour, Y., Talebi, A.A., 2014. Development response of Spodoptera exigua to eight constant temperatures: linear and nonlinear modelling. J. Asia Pacific Entomol. 17, 349-354. https://doi.org/10.1016/j.aspen.2014.03.002
  23. Kim, D.-S., Lee, J.-H., 2010. A population for the peach fruit moth, Carposina sasakii Matsumaur (Lepidoptera: Carposinidae) in a Korean orchard system. Ecol. Modell. 221, 268-280. https://doi.org/10.1016/j.ecolmodel.2009.10.006
  24. Kim, D-S., Ahn, J.J., Lee, J-H., 2017. A review for non-linear models describing temperature-dependent development of insect populations: characteristics and developmental process of models. Korean J. Appl. Entomol. 56, 1-18. https://doi.org/10.5656/KSAE.2016.11.0.061
  25. Kim, D-S., Lee, J-H., 2003. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecol. Model. 162, 145-153. https://doi.org/10.1016/S0304-3800(02)00402-7
  26. Kobayashi, T., Oku, T., 1980. Sampling lepidopterous pod borers on soybean, in: Kogan, M., Herzog, D.C. (Eds.), Sampling methods in soybean entomology. Springer-Verlag, New York, pp. 422-437.
  27. Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
  28. Logan, J.A., Wollkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140. https://doi.org/10.1093/ee/5.6.1133
  29. Oku, T., Miyahara, Y., Fujimura, T., Toki, A., 1983. Preliminary note Matsumuraeses species (Lepidoptera, Tortricidae) injuring soybeans in Tohoku district. Jap. J. Appl. Ent. Zool. 27, 28-34. https://doi.org/10.1303/jjaez.27.28
  30. Park, C.-G., Yum, K.-H., Lee, S.-K., Lee, S.-G., 2015a. Construction and evaluation of cohort based model for predicting population dynamics of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) using Dymex. Korean J. Appl. Entomol. 54, 73-81. https://doi.org/10.5656/KSAE.2015.03.0.007
  31. Park, H.-H., Park, C.-G., Ahn, J.J., 2014. Oviposition model of Cnaphalocrocis medinalis Guenee. J. Asia-Pac. Entomol. 17, 781-786. https://doi.org/10.1016/j.aspen.2014.07.010
  32. Park, H.H., Park, C.-G., Choi, B.-R., Lee, S.-G., Ahn, J.J., 2015b. Thermal effects on the development of Naranga aenescens Moore (Lepidoptera: Noctuidae). J. Asia-Pac. Entomol. 18, 643-649. https://doi.org/10.1016/j.aspen.2015.07.016
  33. Park, J.-J., Mo, H.-H., Lee, D.-H., Shin, K.-I., Cho, K., 2012. Modelling and validation of population dynamics of the American serpentine leafminer (Liriomyza trifolii) using leaf surface temperatures of greenhouses cherry tomatoes. Korean J. Appl. Entomol. 51, 235-243. https://doi.org/10.5656/KSAE.2012.06.0.013
  34. Pinder III, J.E., Wiener, J.G., Smith, M.H., 1978. The Weibull distribution: a new method of summarizing survivorship data. Ecology 59, 175-179. https://doi.org/10.2307/1936645
  35. Plessis, H.D., Schlemmer M.-L., Van den Berg, J., 2020. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 11, 228 https://doi.org/10.3390/insects11040228
  36. R Core Team. 2015. R: A language and environment for statistical computing. R foundation for statistical computing. http://www.r-project.org. (accessed 20 January 2022).
  37. Ratkowsky, D.A., Reddy, G.V.P., 2017. Empirical model with excellent statistical properties for describing temperaturedependent developmental rates of insects and mites. Ann. Entomol. Soc. Am. 110, 302-309. https://doi.org/10.1093/aesa/saw098
  38. Roy, S., Saha, T.T., Zou, Z., Raikhel, A.S., 2018. Regulatory path-ways controlling female insect reproduction. Annu. Rev. Entomol. 63, 489-511. https://doi.org/10.1146/annurev-ento-020117-043258
  39. SAS Institute, 2004. SAS System for Window, Release 8.02. SAS Institute, Cary, NC.
  40. Schoolfield, R.M., Sharpe, P.J.H., Mugnuson, C.E., 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theo. Biol. 88, 715-731.
  41. Schowalter, T.D. 2011. Insect ecology: An ecosystem approach, 3rd ed., Academic Press, CA.
  42. Seo, B.Y., Jung, J.K., Cho, J.R., Kim, Y., Park, C.G., 2012. A PCR method to distinguish Matsumuraeses phaseoli from M. falcana based on the difference of nucleotide sequence in the mitochondrial cytochrome c oxidase subunit I. Korean J. Appl. Entomol. 51, 365-370. https://doi.org/10.5656/KSAE.2012.09.0.037
  43. Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm development. J. Theo. Bio. 64, 649-670. https://doi.org/10.1016/0022-5193(77)90265-X
  44. Shi, P-J., Reddy, G.V.P., Chen, L., Ge, F., 2017. Comparison of thermal performance equations in describing temperature-dependent developmental rates of insects: (II) two thermodynamic models. Ann. Entomol. Soc. Am. 110, 113-120. https://doi.org/10.1093/aesa/saw067
  45. Shirai, Y., 2006. Flight activity, reproduction, and adult nutrition of the beet webworm, Spoladea recurvalis Fabricius (Lepidoptera: Pyralidae). Appl. Entomol. Zool. 41, 405-414. https://doi.org/10.1303/aez.2006.405
  46. Silva, E.D.B., Kuhn, T.M.A., Monteiro, L.B., 2011. Oviposition behavior of Grapholita molesta Busck (Lepidoptera: Tortricidae) at different temperatures. Neotrop. Entomol. 40, 415-420.
  47. Sun, B.-B., Jiang, X.-F., Zhang, L., Stanley, D.W., Luo, L.-Z., Long, W., 2013. Methoprene influences reproduction and flight capacity in adults of the rice leaf roller, Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae), Arch. Insect Biochem. Physiol. 82, 1-13. https://doi.org/10.1002/arch.21067
  48. Tian, Z., Wang, S., Bai, B., Gao, B., Liu, J., 2020. Effect of temperature on survival, development, and reproduction of Aphis glycines (Hemiptera: Aphididae) autumnal morphs. Fla. Entomol. 103, 236-242. https://doi.org/10.1653/024.103.0213
  49. Wagner, T.L., Wu, H.I., Sharpe, P.J.H., Schoolfield, R.M., Coulson, B.N., 1984. Modeling insect development rates: a literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77, 208-225. https://doi.org/10.1093/aesa/77.2.208
  50. Weibull, W., 1951. A statistical distribution functions with wide applicability. J. Appl. Mech. 18, 293-297. https://doi.org/10.1115/1.4010337