DOI QR코드

DOI QR Code

Prediction of Changes in Potential Distribution of Warm-Temperate and Subtropical Trees, Myrica rubra and Syzygium buxifolium in South Korea

남한에서 기후변화에 따른 난아열대 목본식물, Myrica rubra와 Syzygium buxifolium의 잠재분포 변화 예측

  • 임은영 (국립산림과학원 난대.아열대산림연구소) ;
  • 원현규 (국립산림과학원 난대.아열대산림연구소 ) ;
  • 원종서 (주)에코앤지오 ) ;
  • 김다나 (주)에코앤지오 ) ;
  • 조형진 (주)에코앤지오 )
  • Received : 2022.12.21
  • Accepted : 2022.12.23
  • Published : 2022.12.31

Abstract

Analyzing the impact of climate change on the Korean Peninsula on the forest ecosystem is important for the management of subtropical forest bioresources. In this study, we collected location data and bioclimatic variables of the warm-temperate woody plant species, Myrica rubra and Cyzygium buxifolium, and applied the MaxEnt model based on the collected data to estimate the potential distribution area. Precipitation and temperature seasonality in the warmest quarter were the main environmental factors that determined the distribution of M. rubra, and the main environmental factors for S. buxifolium were precipitation in the warmest quarter and precipitation in the wettest quarter. The results of the MaxEnt model by administrative district, the M. rubra showed an area increase rate of 4.6 - 17.7% in the SSP2-4.5 climate change scenario and 13.8 - 30.5% in the SSP5-8.5 climate change scenario. S. buxifolium showed area increase rates of 4.8 - 32.2% in the SSP2-4.5 climate change scenario and 12.9 - 48.6% in the SSP5-8.5 climate change scenario. This study is meaningful in establishing a database and identifying future potential distribution areas of warm and subtropical plants by applying climate change scenarios.

한반도의 기후변화가 산림생태계에 미치는 영향을 분석하는 것은 난아열대 산림생명자원 관리에 중요하다. 본 연구에서는 난아열대 목본식물인 소귀나무와 Syzygium buxifolium의 위치자료와 생물기후변수를 수집하고, 수집된 자료를 바탕으로 MaxEnt 모형에 적용하여 잠재분포 영역을 추정하였다. 소귀나무의 분포를 결정하는 주요 환경인자는 가장 따뜻한 분기의 강수와 온도 계절성이고, Syzygium buxifolium의 주요 환경인자는 가장 따듯한 분기의 강수와 가장 습한 분기의 강수로 나타났다. MaxEnt 모형의 행정구역별 결과, 소귀나무는 SSP2-4.5 기후변화 시나리오에서 4.6 - 17.7%의 면적 증가율을 보였고, SSP5-8.5 기후변화 시나리오에서 13.8 - 30.5%의 면적 증가율을 보였다. Syzygium buxifolium는 SSP2-4.5 기후변화 시나리오에서 4.8 - 32.2%, SSP5-8.5 기후변화 시나리오에서 12.9 - 48.6%의 면적 증가율을 보였다. 본 연구는 기후변화 시나리오를 적용하여 난대아열대 식물의 미래 잠재분포 영역을 확인하고 데이터베이스를 구축하는데 의의가 있다.

Keywords

Acknowledgement

본 연구는 국립산림과학원 난대·아열대산림연구소의 지원으로 수행되었습니다 (Project No. FE0200-2021-01-2022).

References

  1. AMNH 2022. American Musem of Natural History. https://biodiversityinformatics.amnh.org/open_source/maxent. Assessed 01 April 2022.
  2. Bae, E.H. and Jung, J.H. 2015. Prediction of shift in fish distributions in the Geum River Watershed under climate change. Ecology and Resilient Infrastructure 2: 198-205. (in Korean) https://doi.org/10.17820/eri.2015.2.3.198
  3. Cho, K.H. and Lee, S.H. 2015. Prediction of changes in the potential distribution of a waterfront alien plant, Paspalum distichum var. indutum, under climate change in the Korean Peninsula. Ecology and Resilient Infrastructure 2: 206-215. (in Korean) https://doi.org/10.17820/eri.2015.2.3.206
  4. Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E., and Yates, C.J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
  5. GBIF. 2022. Global Biodiversity Information Facility. http://data.gbif.org/species. Assessed 06 July 2022.
  6. Go, S.-J., Kang H., Chim S.-H., and Chang, J.I. 1997. Native habitat survey of wax myrtle in Cheju Province and its propagation by seed and cutting. Journal of Biological Production Facilities & Environmental Control 6: 225-234. (in Korean)
  7. Kim, C.H., Moon, M.O., An, J.G., Hwang, I.C., Lee, S.H., Choi, S.S., Lee, J.H., Beom, H.M., Kim, C.G., and Cha, J.Y. 2018. Floristic target species in Korea. National Institute of Ecology, Seocheon, South Korea. (in Korean)
  8. Kim, W.-M., Kim, C.Y., Cho, J.P., Hur, J.N., and Song, W.K. 2022. Prediction of Acer pictum subsp. mono distribution using bioclimatic predictor based on SSP scenario detailed data. Ecology and Resilient Infrastructure 9: 163-173. (in Korean) https://doi.org/10.17820/ERI.2022.9.3.163
  9. KMA. 2020. Korean climate change assessment report 2020. Korea Meteorological Administration, Seoul, South Korea. (in Korean)
  10. Lopez-Martinez, V., Sanchez-Martinez, G., Jimenez-Garcia, D., Perez-De la O, N.B., and Coleman, T.W. 2016. Environmental suitability for Agrilus auroguttatus (Coleoptera: Buprestidae) in Mexico using MaxEnt and database records of four Quercus (Fagaceae) species. Agricultural and Forest Entomology 18: 409-418. https://doi.org/10.1111/afe.12174
  11. NBC. 2022. CBD-CHM KOREA. National Biodiversity Center. https://www.kbr.go.kr. Assessed 06 July 2022.
  12. Negrini, M., Fidelis, E.G., Picanco, M.C., and Ramos, R.S. 2020. Mapping of the Steneotarsonemus spinki invasion risk in suitable areas for rice (Oryza sativa) cultivation using MaxEnt. Experimental and Applied Acarology 80: 445-461.
  13. NIFS. 2021. Analysis of potential distribution area of subtropical forest life resources in response to climate change. National Institute of Forest Science, Seoul, South Korea. (in Korean)
  14. Oh, Y.-J., Kim, M.-H., Choi, S.-K., Kim, M.-K., Eo, J., Yeob, S.-J., Bang, J. H., and Lee, Y. H. 2021. Prediction of the spatial distribution of suitable habitats for Geranium carolinianum under SSP scenarios. Ecology and Resilient Infrastructure, 8: 154-163. (in Korean)
  15. O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M. 2016. The Scenario model intercomparison project (ScenarioMIP) for CMIP6, Geoscientific Model Development, 9: 3461-3482. https://doi.org/10.5194/gmd-9-3461-2016
  16. Padalia, H., Srivastava, V., and Kushwaha, S.P.S. 2014. Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecological Informatics 22: 36-43. https://doi.org/10.1016/j.ecoinf.2014.04.002
  17. Palkar, R.S., Janarthanam, M.K., and Sellappan, K. 2020. Prediction of potential distribution and climatic factors influencing Garcinia indica in the Western Ghats of India using ecological niche modeling. National Academy Science Letters 7: 1-7.
  18. Phillips, S.J., Anderson, R.P., and Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  19. Phillips, S.J., Anderson, R.P., Dudik, M., Schapire, R.E., and Blair, M.E. 2017. Opening the black box: An open-source release of Maxent. Ecography 40: 887-893. https://doi.org/10.1111/ecog.03049
  20. QGIS Development Team. 2022. QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.org. Assessed 06 April 2022.
  21. Santos, R.R., Hernandez, M.J.P., Baez, W.L., Ramos, J.H., Flores, H.J. M., Uicab, J.V.C., and Santos, M.D.R. 2018. The ecological niche as a tool for predicting potential areas of two pine species. Mexican Journal of Forest Sciences, 9: 47-68.
  22. Schmidt, H., Radinger, J., Teschlade, D., and Stoll, S. 2020. The role of spatial units in modelling freshwater fish distributions: Comparing a subcatchment and river network approach using MaxEnt. Ecological Modelling 418: 108937.
  23. Valavi, R., Shafizadeh-Moghadam, H., Matkan, A., Shakiba, A., Mirbagheri, B., and Kia, S.H. 2019. Modelling climate change effects on Zagros forests in Iran using individual and ensemble forecasting approaches. Theoretical and Applied Climatology 137: 1015-1025. https://doi.org/10.1007/s00704-018-2625-z
  24. Warren, D.L., Glor, R.E., and Turelli, M. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607-611. https://doi.org/10.1111/j.1600-0587.2009.06142.x
  25. Worldclim. 2022. Global climate and weather data. http://www.worldclim.org. Assessed 06 July 2022.