DOI QR코드

DOI QR Code

Recovery of Valuable Lithium Hydroxide by Ion Exchange Process: A Review

이온 교환 공정에 의한 귀중한 수산화 리튬의 회수: 리뷰

  • Sarsenbek, Assel (Nano Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University) ;
  • Rajkumar, Patel (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • 살센벡 아샐 (연세대학교 언더우드국제대학 융합과학공학부 나노과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경융합전공)
  • Received : 2022.11.17
  • Accepted : 2022.12.19
  • Published : 2022.12.31

Abstract

Demand for lithium hydroxide (LiOH) is annually increasing due to its efficiency and safety for the environment in comparison to its current alternatives. Lithium can be found in different salty and brine lakes which later synthesized to produce LiOH for various applications. Different methods are used to separate and recover lithium ions, the most common of which is electrodialysis (ED). ED is a membrane-based separation technique which works on potential difference of its layers as a driving force to push ions from one side to another. The ion exchange membrane (IEM) in ED makes the process efficient because of the perm selectivity of different ions vary depending on their hydrodynamic volume. In this review, the different alteration strategies of both ED and IEM, to enhance the recovery of lithium ions are discussed.

수산화리튬(LiOH)에 대한 수요는 현재의 대안들에 비해 환경에 대한 효율성과 안전성 때문에 매년 증가하고 있다. 리튬은 다른 염분과 염수 호수에서 발견될 수 있으며, 나중에 합성되어 다양한 용도로 LiOH를 생성한다. 리튬 이온을 분리 및 회수하기 위해 다양한 방법이 사용되며, 그 중 가장 일반적인 방법은 전기투석법(ED)이다. ED는 이온을 한쪽에서 다른 쪽으로 밀어내는 구동력으로서 그 층의 전위차에 작용하는 멤브레인 기반 분리 기술이다. ED의 이온교환막(IEM)은 유체역학적 부피에 따라 상이한 이온의 선택성이 달라지기 때문에 공정을 효율적으로 만든다. 본 총설에서는 리튬이온의 회수를 향상시키기 위한 ED와 IEM의 서로 다른 변화 전략이 논의된다.

Keywords

References

  1. E. Kim and R. Patel, "A Review on Lithium Recovery by Membrane Process", Membr J., 31, 315
  2. N. Parsa, A. Moheb, A. Mehrabani-Zeinabad, and M. A. Masigol, "Recovery of lithium ions from sodium-contaminated lithium bromide solution by using electrodialysis process", Chem. Eng. Res. Des., 98, 81 (2015).
  3. S. H. Oh and R. Patel, "Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery", Membr J., 30, 228 (2020).
  4. Y. Sun, R. Yun, Y. Zang, M. Pu, and X. Xiang, "Highly efficient lithium recovery from pre-synthesized chlorine-ion-intercalated LiAl-layered double hydroxides via a mild solution chemistry process", Mater., 12, 1968 (2019).
  5. M. Villen-Guzman, B. Arhoun, C. Vereda-Alonso, C. Gomez-Lahoz, J. M. Rodriguez-Maroto, and J. M. Paz-Garcia, "Electrodialytic processes in solid matrices. New insights into battery recycling. A review", J. Chem. Technol. Biotechnol., 94, 1727 (2019).
  6. M. Abdollahzadeh, E. Hosseini, H. Ahmadi, S. Lim, A. H. Korayem, A. Razmjou, and M. Asadnia, "Low humid transport of anions in layered double hydroxides membranes using polydopamine coating", J. Membr. Sci., 624, 118974 (2020).
  7. Y. Cho, K. Kim, J. Ahn, and J. Lee, "A study on lithium hydroxide recovery using bipolar membrane electrodialysis", J. Korean Inst. Met. Mat., 59, 223
  8. D. Ipekci, E. Altiok, S. Bunani, K. Yoshizuka, S. Nishihama, M. Arda, and N. Kabay, "Effect of acid-base solutions used in acid-base compartments for simultaneous recovery of lithium and boron from aqueous solution using bipolar membrane electrodialysis (BMED)", Desalination, 448, 69 (2018).
  9. Y. A. Jarma, E. Cermikli, D. Ipekci, E. Altiok, and N. Kabay, "Comparison of two electrodialysis stacks having different ion exchange and bipolar membranes for simultaneous separation of boron and lithium from aqueous solution", Desalination, 500, 114850
  10. S. Joo, H. W. Shim, J. J. Choi, C. G. Lee, and D. G. Kim, "A Method of Synthesizing Lithium Hydroxide Nanoparticles Using Lithium Sulfate from Spent Batteries by 2-Step Precipitation Method", J. Korean Inst. Met. Mat., 58, 286 (2020).
  11. Y. Qiu, L. Yao, C. Tang, Y. Zhao, J. Zhu, and J. Shen, "Integration of selectrodialysis and selectrodialysis with bipolar membrane to salt lake treatment for the production of lithium hydroxide", Desalination, 465, 1 (2019).
  12. L. Yao, Y. Qiu, Y. Zhao, C. Tang, and J. Shen, "A continuous mode operation of bipolar membrane electrodialysis (BMED) for the production of high-pure choline hydroxide from choline chloride", Sep. Purif. Technol., 233, 116054 (2020).
  13. Z. Miao, F. Pei, Z. Liu, Z. Zhang, R. Yu, and R. Liu, "Preparation of highly purity Tetrabutyl Ammonium Hydroxide using a novel method of Electro-Electrodialysis: The study on mass transfer process and influencing factors", J. Membr. Sci., 567, 281 (2018).
  14. B. Yuan, J. Wang, W. Cai, Y. Yang, M. Yi, and L. Xiang, "Effects of temperature on conversion of Li2CO3 to LiOH in Ca(OH)2 suspension", Particuology, 34, 97 (2017).
  15. Y. Zhao, H. Wang, Y. Li, M. Wang, and X. Xiang, "An integrated membrane process for preparation of lithium hydroxide from high Mg/Li ratio salt lake brine", Desalination, 493, 114620 (2020).
  16. M. Grageda, A. Gonzalez, A. Quispe, and S. Ushak, "Analysis of a process for producing battery grade lithium hydroxide by membrane electrodialysis", Membranes, 10, 1 (2020).
  17. L. He, Z. Li, Y. Zhu, and C. Yang, "A green and cost-effective method for production of LiOH from spent LiFePO4", ACS Sustain. Chem. Eng., 8, 15915 (2020).
  18. S. Kim, M. Choi, J. S. Kang, H. Joo, B. H. Park, Y. E. Sung, and J. Yoon, "Electrochemical recovery of LiOH from used CO2 adsorbents", Catal Today, 359, 83
  19. S. Bunani, N. Kabay, S. Bunani, M. Arda, K. Yoshizuka, S. Nishihama, and S. Bunani, "Effect of process conditions on recovery of lithium and boron from water using bipolar membrane electrodialysis (BMED)", Desalination, 416, 10 (2017).
  20. X. Chen, X. Ruan, S. E. Kentish, G. K. Li, T. Xu, and G. Q. Chen, "Production of lithium hydroxide by electrodialysis with bipolar membranes", Sep. Purif. Technol., 274, 119026
  21. A. Gonzalez, M. Grageda, A. Quispe, S. Ushak, P. Sistat, and M. Cretin, "Application and analysis of bipolar membrane electrodialysis for lioh production at high electrolyte concentrations: Current scope and challenges", Membranes, 11,
  22. C. Jiang, Y. Wang, Q. Wang, H. Feng, and T. Xu, "Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM)", Ind. Eng. Chem. Res., 53, 6103 (2014).
  23. Y. Qiu, L. Yao, C. Tang, Y. Zhao, J. Zhu, and J. Shen, "Integration of selectrodialysis and selectrodialysis with bipolar membrane to salt lake treatment for the production of lithium hydroxide", Desalination, 465, 1 (2019).
  24. Y. Zhao, X. Xiang, M. Wang, H. Wang, Y. Li, J. Li, and H. Yang, "Preparation of LiOH through BMED process from lithium-containing solutions: Effects of coexisting ions and competition between Na+ and Li+", Desalination, 512, 115126 (2021).