DOI QR코드

DOI QR Code

Bibliographic and network analysis of environmental impacts to animal contagious diseases

  • Jee-Sun, Oh (School of Business and Technology Management, Korea Advanced Institute of Science and Technology) ;
  • Sang-Joon, Lee (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Sang Jin, Lim (College of Forest & Environmental Sciences and Institute of Forest Science, Kangwon National University) ;
  • Yung Chul, Park (College of Forest & Environmental Sciences and Institute of Forest Science, Kangwon National University) ;
  • Ho-Seong, Cho (College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University) ;
  • Yeonsu, Oh (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University)
  • Received : 2022.09.09
  • Accepted : 2022.12.01
  • Published : 2022.12.30

Abstract

The applications of artificial intelligence (AI) can provide useful solutions to animal infectious diseases and their impact on humans. The advent of AI learning algorithms and recognition technologies is especially advantageous in applied studies, including the detection, analysis, impact assessment, simulation, and prediction of environmental impacts on malignant animal epidemics. To this end, this study specifically focused on environmental pollution and animal diseases. While the number of related studies is rapidly increasing, the research trends, evolution, and collaboration in this field are not yet well-established. We analyzed the bibliographic data of 1191 articles on AI applications to environmental pollution and animal diseases during the period of 2000~2019; these articles were collected from the Web of Science (WoS). The results revealed that PR China and the United States are the leaders in research production, impact, and collaboration. Finally, we provided research directions and practical implications for the incorporation of AI applications to address environmental impacts on animal diseases.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET), through the Animal Disease Management Technology Advancement Support Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (Project No. 122013-2).

References

  1. Abdallah M, Talib MA, Feroz S, Nasir Q, Abdalla H, Mahfood B. 2020. Artificial intelligence applications in solid waste management: a systematic research review. Waste Management 109: 231-246. https://doi.org/10.1016/j.wasman.2020.04.057
  2. Altizer S, Bartel R, Han BA. 2011. Animal migration and infectious disease risk. Science 331: 296-302. https://doi.org/10.1126/science.1194694
  3. Andrade DF, Romanelli JP, Pereira-Filho ER. 2019. Past and emerging topics related to electronic waste management: top countries, trends, and perspectives. Environmental Science and Pollution Research 26: 17135-17151. https://doi.org/10.1007/s11356-019-05089-y
  4. Bean, R. 2017. How big data is empowering ai and machine learning at scale. MIT sloan management review. https://sloanreview.mit.edu/article/how-bigdata-is-empowering-ai-and-machine-learning-at-scale.
  5. Cath C, Wachter S, Mittelstadt B, Taddeo M, Floridi L. 2018. Artificial intelligence and the 'good society': the US, EU, and UK approach. Science and engineering ethics 24: 505-528.
  6. D'Amato G, Bergmann KC, Cecchi L, Annesi-Maesano I, Sanduzzi A, Liccardi G, Vitale C, Stanziola A, D' Amato M. 2014. Climate change and air pollution. Allergo Journal 23: 32-38.
  7. Dhital S, Rupakheti D. 2019. Bibliometric analysis of global research on air pollution and human health: 1998~2017. Environmental Science and Pollution Research 26: 13103-13114. https://doi.org/10.1007/s11356-019-04482-x
  8. Ellegaard O, Wallin JA. 2015. The bibliometric analysis of scholarly production: How great is the impact?. Scientometrics 105: 1809-1831. https://doi.org/10.1007/s11192-015-1645-z
  9. Fan M, Hu J, Cao R, Ruan W, Wei X. 2018. A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence. Chemosphere 200: 330-343. https://doi.org/10.1016/j.chemosphere.2018.02.111
  10. Fu HZ, Ho YS, Sui YM, Li ZS. 2010. A bibliometric analysis of solid waste research during the period 1993 ~2008. Waste Management 30: 2410-2417. https://doi.org/10.1016/j.wasman.2010.06.008
  11. Gao J, Huang X, Zhang L. 2019. Comparative analysis between international research hotspots and national-level policy keywords on artificial intelligence in China from 2009 to 2018. Sustainability 11: 6574.
  12. Guo K, Liu YF, Zeng C, Chen YY, Wei XJ. 2014. Global research on soil contamination from 1999 to 2012: a bibliometric analysis. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science 64: 377-391.
  13. Haenlein M, Kaplan A. 2019. A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California management review 61: 5-14. https://doi.org/10.1177/0008125619864925
  14. He K, Zhang J, Zeng Y. 2019. Knowledge domain and emerging trends of agricultural waste management in the field of social science: a scientometric review. Science of the total environment 670: 236-244. https://doi.org/10.1016/j.scitotenv.2019.03.184
  15. Ho YS. 2008. Bibliometric analysis of biosorption technology in water treatment research from 1991 to 2004. International Journal of Environment and pollution 34: 1-13. https://doi.org/10.1504/IJEP.2008.020778
  16. Hou H, Kretschmer H, Liu Z. 2008. The structure of scientific collaboration networks in Scientometrics. Scientometrics 75: 189-202. https://doi.org/10.1007/s11192-007-1771-3
  17. Hu J, Ma Y, Zhang L, Gan F, Ho YS. 2010. A historical review and bibliometric analysis of research on lead in drinking water field from 1991 to 2007. Science of the total environment 408: 1738-1744. https://doi.org/10.1016/j.scitotenv.2009.12.038
  18. Li Y, Wang Y, Rui X, Li Y, Li Y, Wang H, Zuo J, Tong Y. 2017. Sources of atmospheric pollution: a bibliometric analysis. Scientometrics 112: 1025-1045. https://doi.org/10.1007/s11192-017-2421-z
  19. Losacco C, Perillo A. 2018. Particulate matter air pollution and respiratory impact on humans and animals. Environmental Science and Pollution Research 25: 33901-33910. https://doi.org/10.1007/s11356-018-3344-9
  20. Mao G, Huang N, Chen L, Wang H. 2018. Research on biomass energy and environment from the past to the future: a bibliometric analysis. Science of The Total Environment 635: 1081-1090. https://doi.org/10.1016/j.scitotenv.2018.04.173
  21. Mo X, Zhang L, Li H, Qu Z. 2019. A novel air quality early-warning system based on artificial intelligence. International Journal of Environmental Research and Public Health 16: 3505.
  22. OECD. 2019. OECD publishing. Artificial Intelligence in Society. https://doi.org/10.1787/eedfee77-en.
  23. Oh JS, Cho HS, Oh Y. 2021. Bibliometric analysis on the evolution of knowledge structure of African swine fever. Korean Journal of Veterinary Service 44: 257-270. https://doi.org/10.7853/kjvs.2021.44.4.257
  24. Ouyang W, Wang Y, Lin C, He M, Hao F, Liu H, Zhu W. 2018. Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Science of the Total Environment 637: 208-220.
  25. Padilla FM, Gallardo M, Manzano-Agugliaro F. 2018. Global trends in nitrate leaching research in the 1960~2017 period. Science of the Total Environment 643: 400-413. https://doi.org/10.1016/j.scitotenv.2018.06.215
  26. Patz JA, Githeko AK, McCarty JP, Hussein S, Confalonieri U, Wet N. 2003. Climate change and infectious diseases. Climate change and human health: risks and responses 2: 103-132.
  27. Seinfeld JH, Pandis SN. 1998. From air pollution to climate change. Atmospheric chemistry and physics: 1326.
  28. Sun J, Wang MH, Ho YS. 2012. A historical review and bibliometric analysis of research on estuary pollution. Marine Pollution Bulletin 64: 13-21. https://doi.org/10.1016/j.marpolbul.2011.10.034
  29. Tomasev N, Cornebise J, Hutter F, Mohamed S, Picciariello A, Connelly B, Belgrave DCM, Ezer D, Heart FC, Mugisha F, Abila G, Arai H, Almiraat H, Proskurnia J, Snyder K, Otake-Matsuura M, Othman M, Glasmachers T, Wever W, Teh YW, Khan ME, Winne RD, Schaul T, Clopath, C. 2020. AI for social good: unlocking the opportunity for positive impact. Nature Communications 11: 1-6. https://doi.org/10.1038/s41467-019-13993-7
  30. Yang B, Huang K, Sun D, Zhang Y. 2017. Mapping the scientific research on non-point source pollution: a bibliometric analysis. Environmental Science and Pollution Research 24: 4352-4366. https://doi.org/10.1007/s11356-016-8130-y
  31. Yang L, Chen Z, Liu T, Gong Z, Yu Y, Wang J. 2013. Global trends of solid waste research from 1997 to 2011 by using bibliometric analysis. Scientometrics 96(1): 133-146. https://doi.org/10.1007/s11192-012-0911-6
  32. Ye Z, Yang J, Zhong N, Tu X, Jia J, Wang J. 2020. Tackling environmental challenges in pollution controls using artificial intelligence: a review. Science of the Total Environment 699: 134279.
  33. Zhao L, Dai T, Qiao Z, Sun P, Hao J, Yang Y. 2020. Application of artificial intelligence to wastewater treatment: a bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse. Process Safety and Environmental Protection 133: 169-182. https://doi.org/10.1016/j.psep.2019.11.014
  34. Zheng T, Wang J, Wang Q, Nie C, Smale N, Shi Z, Wang X. 2015. A bibliometric analysis of industrial waste-water research: current trends and future prospects. Scientometrics 105: 863-882. https://doi.org/10.1007/s11192-015-1736-x
  35. Zhou W, Zhang F, Cui S, Chang KC. 2022. Is There Always a Negative Causality between Human Health and Environmental Degradation? Current Evidence from Rural China. International Journal of Environmental Research and Public Health, 19: 10561.