DOI QR코드

DOI QR Code

Applicability Analysis of the FE Analysis Method Based on the Empirical Equation for Near-field Explosions

근거리 폭발에 대한 경험식 기반 유한요소해석 방법의 적용성 분석

  • Hyun-Seop, Shin (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Sung-Wook, Kim (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Jae-Heum, Moon (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology (KICT))
  • 신현섭 (한국건설기술연구원 구조연구본부 ) ;
  • 김성욱 (한국건설기술연구원 구조연구본부) ;
  • 문재흠 (한국건설기술연구원 구조연구본부 )
  • Received : 2022.09.05
  • Accepted : 2022.11.03
  • Published : 2022.12.31

Abstract

The blast analysis method entails the use of an empirical equation and application of the pressure-time history curve as an explosive load. Although this method is efficient owing to its simple model and short run time, previous studies indicate that it may not be appropriate for near-field explosions. In this study, we investigated why different results were observed for the analysis method by considering an RC beam under near-field explosion conditions with the scaled distance of 0.4-1.0 as an example. On this basis, we examined the application range of the empirical analysis method by using the finite element analysis program LS-DYNA. The results indicate that the empirical analysis method based on data from far-field explosion tests underestimates the impulse. Thus, the calculated deflection of the RC beam would be smaller than the measured deflection and arbitrary Lagrangian-Eulerian (ALE) analysis result. The ALE analysis method is more suitable for near-field explosion conditions wherein the structural responses are large.

경험식에 기반한 폭발 해석방법은 폭압-시간 이력곡선을 하중으로 적용하여 해석하는 방법이다. 이 방법은 모델링이 간단하고 해석시간이 짧아 효율적이지만, 일부 연구에 따르면 근거리 폭발 해석에는 적합하지 않음이 보고되고 있다. 본 연구에서는 예로써 환산거리 0.4~1.0의 근거리 폭발조건에 있는 RC 보에 대해 해석방법에 따른 결과의 차이 및 원인을 분석하였고, 이를 통해 경험식 방법을 이용한 해석의 적용 범위를 구체적으로 검토 및 확인할 수 있었다. 사용된 유한요소해석 프로그램은 LS-DYNA이다. 해석결과에 따르면, 원거리 폭발 실험 데이터를 근거로 하는 경험식 해석방법은 충격량을 과소평가하고 있었다. 이로 인해 RC 보의 처짐은 측정된 처짐 또는 ALE(Arbitrary Lagrangian Eulerian) 해석결과에 비해 작게 계산되었다. 구조체의 응답이 크게 나타나는 근거리 폭발에 대해서는 ALE 해석방법을 사용하는 것이 더 적합할 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원 주요사업(수소도시 기반시설의 안전 및 수용성 확보기술 개발(1/3)-방호구조시스템)의 연구비 지원에 의해 수행되었습니다.

References

  1. ASCE (2011) Blast Pretection of Buildings: Standard ASCE/SEI 59-11, American Society of Civil Engineers, U.S.A.
  2. Carriere, M., Heffernan, P.J., Wight, R.G., Braimah, A. (2009) Behaviour of Steel Reinforced Polymer (SRP) Strengthened RC Members under Blast Load, Can. J. Civil Eng., 36(8), pp.1356~1365. https://doi.org/10.1139/L09-053
  3. Dobrocinski, S., Flis, L. (2015) Numerical Simulations of Blast Loads from Near-field Ground Explosions in Air, Stud. Geotech. et Mech., 37(4), pp.11~18.
  4. Friedlander, F.G. (1946) The Diffraction of Sound Pulses, I. Diffraction by a Semi-Infinite Plate, Proc. R. Soc. Lond. A, 186, pp.322~344. https://doi.org/10.1098/rspa.1946.0046
  5. Gargano, A., Das, R., Mouritz, A.P. (2019) Finite Element Modelling of the Explosive Blast Response of Carbon FibrePolymer Laminates, Compos. Part B: Eng., 177, 107412.
  6. Guzas, E.L., Earls, C.J. (2010) Air Blast Load Generation for Simulating Structural Response, Steel & Compos. Struct., 10(5), pp.429~455. https://doi.org/10.12989/scs.2010.10.5.429
  7. Hyde, D. (1988) User's Guide for Microcomputer Programs CONWEP and FUNPRO, Applications of TM 5-855-1, U.S. Army Engineer Waterways Experimental Station, Vicksburg.
  8. Jeon, D.J., Han, S.E. (2016) A Suggestion of Simplified Load Formula for Blast Analysis, J. Comput. Struct. Eng. Inst. Korea, 29(1), pp.67~75. https://doi.org/10.7734/COSEIK.2016.29.1.67
  9. Karlos, V., Larcher, M., Solomos, G. (2015) Analysis of the Blast Wave Decay Coefficient in the Friedlander Equation using the Kingery-Bulmash Data, Joint Research Center, European Commission.
  10. Karlos, V., Solomos, G., Larcher, M. (2016) Analysis of Blast Parameters in the Near-Field for Spherical Free-Air Explosions, Joint Research Center Technical Report, European Commission.
  11. Kingery, C., Bulmash, G. (1984) Air Blast Parameters from TNT Spherical Air Burst and Hemispherical Burst, US Army Armament and Development Center, Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland.
  12. Lee, K.K., Kim, T.J., Kim, J.K. (2009) Local Response of W-Shaped Steel Columns under Blast Loading, Struct. Eng. & Mech., 31(1), pp.25~38. https://doi.org/10.12989/sem.2009.31.1.025
  13. Liu, Y., Yan, J.B. Huang, F.L. (2018) Behavior of Reinforced Concrete Beams and Columns Subjected to Blast Loading, Def. Technol., 14(5), pp.550~559. https://doi.org/10.1016/j.dt.2018.07.026
  14. Livermore Software Technology Corporation (2017) LS-DYNA S/W and User's Manuals.
  15. Malver, L.J., Crawford, J.E., Wesevich, J.W., Simons, D. (1997) A Plasticity Concrete Material Model for DYNA3D, Int. J. Impact Eng., 19(9-10), pp.847~873. https://doi.org/10.1016/S0734-743X(97)00023-7
  16. Randers-Pehrson, G., Bannister, K.A. (1997) Airblast Loading Model for DYNA2D and DYNA3D, ARL-TR-1310, U.S. Army Research Laboratory.
  17. Rebelo, H.B., Cismasiu, C. (2017) A Comparison between Three Air Blast Simulation Techniques in LS-DYNA, 11th European LS-DYNA Conference 2017, Salzburg, Austria.
  18. Rigby, S.E., Ak intaro, O.I., Fuller, B.J., Tyas, A., Curry, B.J., Langdon, G.S., Pope, D.J. (2019) Predicting the Response of Plates Subjected to Near-Field Explosion using an Energy Equivalent Impulse, Int. J. Impact Eng., 128, pp.24~36. https://doi.org/10.1016/j.ijimpeng.2019.01.014
  19. Rigby, S.E., Knighton, R., Clarke, S.D., Tyas, A. (2020) Reflected Near-field Blast Pressure Measurements Using High Speed Video, Exp. Mech., 60, pp.875~888. https://doi.org/10.1007/s11340-020-00615-3
  20. Rigby, S.E., Sielicki, P.W. (2014) An Investigation of TNT Equivalence of Hemispherical PE4 Charges, Eng. Trans., 62(4), pp.423~435.
  21. Rigby, S.E., Tyas, A., Bennett, T., Clarke, S.D., Fay, S.D. (2014) The Negative Phase of the Blast Load, Int. J. Prot. Struct., 5(1), pp.1~19. https://doi.org/10.1260/2041-4196.5.1.1
  22. Shin, J.W., Whittaker, A.S., Cormie, D., Wilkinson, W. (2014) Numerical Modelling of close-in Detonations of High Explosives, Eng. Struct., 81, pp.88~97. https://doi.org/10.1016/j.engstruct.2014.09.022
  23. Teich, M., Gebbeken, N. (2010) The Influence of the Under Pressure Phase on the Dynamic Response of Structures Subjected to Blast Loads, Int. J. Prot. Struct., 1(2), pp.219~234. https://doi.org/10.1260/2041-4196.1.2.219
  24. Tyas, A. (2018) Experimental Measurement of Pressure Loading from Near-Field Blast Events: Techniques, Findings and Future Challenges, MDPI Proc. 2018, 2, 471, MDPI.
  25. U.S. Department of Defense (2008) Unified Facilities Criteria: Structures to Resist the Effects of Accidential Explosions, UFC 3-340-02.
  26. Wei, J., Dharani, L.R. (2005) Fracture Mechanics of Laminated Glass Subjected to Blast Loading, Theor. & Appl. Fract. Mech., 44(2), pp.157~167. https://doi.org/10.1016/j.tafmec.2005.06.004
  27. Zak risson, B., Wik man, B., Haggblad, H.A. (2011) Numerical Simulations of Blast Loads and Structural Deformation from Near-Field Explosions in Air, Int. J. Impact Eng., 38(7), pp.597~612. https://doi.org/10.1016/j.ijimpeng.2011.02.005