DOI QR코드

DOI QR Code

Polymers in construction: A brief review authors

  • Khadimallah, Mohamed Amine (College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Harbaoui, Imene (Laboratory of Applied Mechanics and Engineering LR-MAI, University Tunis El Manar-ENIT.) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Qazaq, Amjad (College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Ali, Elimam (College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2020.06.22
  • 심사 : 2022.02.04
  • 발행 : 2022.02.25

초록

Polymers, particularly plastics, have been widely seen as an existential risk to the environment due to their contribution to pollution, carbon emissions and climate change. Many argue that it is possible to substantially ease the threat of plastics by engaging the public in reducing their use in day-to-day life and implementing efficient domestic waste management strategies. On the other hand, polymers and plastics in building and construction are considerably less problematic, if not attractive. In fact, the applications of polymers in construction have been continuously expanding. This is partly due to the developments made in this area being implemented within a sustainable development strategy. In this paper, the main applications of polymers in construction have been revisited and an overview of the research topics in each application has been briefly presented.

키워드

참고문헌

  1. Abdel-Fattah, H. and El-Hawary, M.M. (1999), "Flexural behavior of polymer concrete", Constr. Build. Mater., 13, 253-262. https://doi.org/10.1016/S0950-0618(99)00030-6.
  2. Agavriloaie, L., Oprea, S., Barbuta, M. and Luca, F. (2012), "Characterisation of polymer concrete with epoxy polyurethane acryl matrix", Constr. Build. Mater., 37, 190-196. https://doi.org/10.1016/j.conbuildmat.2012.07.037.
  3. Aguiar, J.B. (1999), "Durability of polymeric pipes in contact with domestic products", Constr. Build. Mater., 13(3), 155-157. https://doi.org/10.1016/S0950-0618(98)00035-X.
  4. Akovali, G. (2005), Polymers in Construction, iSmithers Rapra Publishing.
  5. Albertelli, A. (2009), "Production of glazed panels", USA Patent.
  6. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585. https://doi.org/10.12989/acc.2018.6.6.585.
  7. Allen, H.G. (2013), Analysis and Design of Structural Sandwich Panels: The Commonwealth and International Library: Structures and Solid Body Mechanics Division, Elsevier.
  8. Amin, H.M. and Galal, A. (2021), Corrosion Protection of Metals and Alloys Using Graphene and Biopolymer Based Nanocomposites, CRC Press.
  9. Asokan, P., Osmani, M. and Price, A. (2010), "Improvement of the mechanical properties of glass fibre reinforced plastic waste powder filled concrete", Constr. Build. Mater., 24, 448-460. https://doi.org/10.1016/j.conbuildmat.2009.10.017.
  10. Bedi, R., Chandra, R. and Singh, S.P. (2013), "Mechanical properties of polymer concrete", J. Compos., 2013, 948745. https://doi.org/10.1155/2013/948745.
  11. Berman, B. (2012), "3-D printing: The new industrial revolution", Business Horizons, 55, 155-162. https://doi.org/10.1016/j.bushor.2011.11.003.
  12. Bledzki, A.K. and Faruk, O. (2003), "Wood fiber reinforced polypropylene composites: effect of fibre geometry and coupling agent on physico-mechanical properties", Appl. Compos. Mater., 10, 365-379. https://doi.org/10.1023/A:1025741100628.
  13. Bogue, R. (2013), "3D printing: The dawn of a new era in manufacturing?", Assembly Autom., 33, 307-311. https://doi.org/10.1108/AA-06-2013-055
  14. Bondoc, A.A., Canfield, V.R. and Ziegler, B.R. (1980), U.S. Patent No. 4,242,404.
  15. Cai, S., Zhang, B. and Cremaschi, L. (2017), "Review of moisture behavior and thermal performance of polystyrene insulation in building applications", Build. Envir., 123, 50-65. https://doi.org/10.1016/j.buildenv.2017.06.034.
  16. Calvert, P. (2001), "Inkjet printing for materials and devices", Chem. Mater., 13(10), 3299-3305. https://doi.org/10.1108/01445150310698652.
  17. Carneiro, O.S., Silva, A.F. and Gomes, R. (2015), "Fused deposition modeling with polypropylene", Mater. Des., 83, 768-776. https://doi.org/10.1016/j.matdes.2015.06.053.
  18. Chetanachan, W., Sookkho, D., Sutthitavil, W., Chantasatrasamy, N. and Sinsermsuksakul, R. (2001), "PVC wood: A new look in construction", J. Vinyl Additive Tech., 7(3), 134-137. https://doi.org/10.1002/vnl.10280.
  19. Chew, M.Y.L. and Zhou, X. (2002), "Enhanced resistance of polyurethane sealants against cohesive failure under prolonged combination of water and heat", Polym. Test., 21(2), 187-193. https://doi.org/10.1016/S0142-9418(01)00068-X.
  20. Chowdhury, S., Maniar, A.T. and Suganya, O. (2013), "Polyethylene terephthalate (PET) waste as building solution", Int. J. Chem. Envir. Bio. Sci., 1(2), 2320-4087.
  21. Cole, T.A., Lopez, M. and Ziehl, P.H. (2006), "Fatigue behavior and nondestructive evaluation of full-scale FRP honeycomb bridge specimen", J. Bridge Eng., 11(4), 420-429. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:4(420).
  22. Corinaldesi, V., Giuggiolini, M. and Moriconi, G. (2002), "Use of rubble from building demolition in mortars", Waste Manag., 22(8), 893-899. https://doi.org/10.1016/S0956-053X(02)00087-9.
  23. Correia, J.R., Bai, Y. and Keller, T. (2015), "A review of the fire behaviour of pultruded GFRP structural profiles for civil engineering applications", Compos. Struct., 127, 267-287. https://doi.org/10.1016/j.compstruct.2015.03.006.
  24. Davalos, J.F., Qiao, P., Xu, X.F., Robinson, J. and Barth, K.E. (2001), "Modeling and characterization of fiber-reinforced plastic honeycomb sandwich panels for highway bridge applications", Compos. Struct., 52(3-4), 441-452. https://doi.org/10.1016/S0263-8223(01)00034-4.
  25. Davies, J.M., Wang, Y.C. and Wong, P.M. (2006), "Polymer composites in fire", Compos. Part A Appl. Sci. Manuf., 37(8), 1131-1141. https://doi.org/10.1016/j.compositesa.2005.05.032.
  26. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., 7(2), 65. https://doi.org/10.1016/j.conbuildmat.2007.03.023.
  27. Fang, H., Bai, Y., Liu, W., Qi, Y. and Wang, J. (2019), "Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments", Compos. Part B Eng., 164, 129-143. https://doi.org/10.1016/j.compositesb.2018.11.047.
  28. Ferdous, W., Manalo, A., Aravinthan, T. and Van Erp, G. (2016), "Properties of epoxy polymer concrete matrix: Effect of resin-to-filler ratio and determination of optimal mix for composite railway sleepers", Constr. Build. Mater., 124, 287-300. https://doi.org/10.1016/j.conbuildmat.2016.07.111.
  29. Fowler, D.W., De Puy, D.W., Saud, A.B., Fontana, J. and Pickard, S.S. (1986), "Guide for the use of polymers in concrete", ACI Committee, 548.
  30. Gibson, I., Kvan, T. and Wai Ming, L. (2002), "Rapid prototyping for architectural models", Rapid Prototyp. J., 8(2), 91-95. https://doi.org/10.1108/13552540210420961.
  31. Goodyear. C. (1844), "Improvement in India-rubber fabrics", USA Patent.
  32. Hadi, M.N. and Yuan, J.S. (2017), "Experimental investigation of composite beams reinforced with GFRP I-beam and steel bars", Constr. Build. Mater., 144, 462-474. https://doi.org/10.1016/j.conbuildmat.2017.03.217.
  33. Halliday, S. (2008), Sustainable construction, Routledge.
  34. Hamade, R.F., Andari, T.R., Ammouri, A.H. and Jawahir, I.S. (2019), "Rotary friction welding versus fusion butt welding of plastic pipes-Feasibility and energy perspective", Proc. Manuf., 33, 693-700. https://doi.org/10.1016/j.promfg.2019.04.087.
  35. Hameed, A.M. and Hamza, M.T. (2019), "Characteristics of polymer concrete produced from wasted construction materials", Energy Proc., 157, 43-50. https://doi.org/10.1016/j.egypro.2018.11.162.
  36. Hancock. T. (1843), English patient.
  37. Holsen, T.M., Park, J.K., Jenkins, D. and Selleck, R.E. (1991), "Contamination of potable water by permeation of plastic pipe", J. Am. Water Work. Assoc., 83(8), 53-56. https://doi.org/10.1002/j.1551-8833.1991.tb07199.x.
  38. Indira, V. and Abhitha, K. (2021), "A review on polymer based adsorbents for CO2 capture", IOP Conference Series: Materials Science and Engineering, March.
  39. Junior, M.W., Reis, J.M.L. and da Costa Mattos, H.S. (2017), "Polymer-based composite repair system for severely corroded circumferential welds in steel pipes", Eng. Failure Anal., 81, 135-144. https://doi.org/10.1016/j.engfailanal.2017.08.001.
  40. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 039. https://doi.org/10.12989/acc.2015.3.1.039.
  41. Kodur, V.K.R. and Bhatt, P.P. (2018), "A numerical approach for modeling response of fiber reinforced polymer strengthened concrete slabs exposed to fire", Compos. Struct., 187, 226-240. https://doi.org/10.1016/j.compstruct.2017.12.051.
  42. Koh. E.N., Kim, K., Shin, J. and Kim, Y.W. (2014), "Polyurethane microcapsules for self-healing paint coatings", RSC Adv., 4(31), 16214-16223. https://doi.org/10.1039/C4RA00213J.
  43. Kruth, J.P., Wang, X., Laoui, T. and Froyen, L. (2003), "Lasers and materials in selective laser sintering", Assembly Autom..
  44. Kumar, P., Chandrashekhara, K. and Nanni, A. (2004), "Structural performance of a FRP bridge deck", Constr. Build. Mater., 18(1), 35-47. https://doi.org/10.1016/S0950-0618(03)00036-9.
  45. Liang, J. and Sun, S. (2000), "Site effects on seismic behavior of pipelines: A review", J. Pressure Vessel Tech., 122(4), 469-475. https://doi.org/10.1115/1.1285974.
  46. Lin, X. and Zhang, Y.X. (2013), "Nonlinear finite element analyses of steel/FRP-reinforced concrete beams in fire conditions", Compos. Struct., 97, 277-285. https://doi.org/10.1016/j.compstruct.2012.09.042.
  47. Lisicins, M., Lapkovskis, V., Shishkin, A., Mironovs, V. and Zemcenkovs, V. (2015), "Conversion of polymer and perforated metallic residues into new value-added composite building materials", Energy Proc., 72, 148-155. https://doi.org/10.1016/j.egypro.2015.06.021.
  48. Lloyd. C. and James. G. (2018), "Repair and protection of structures in coastal environments", Concrete Mag..
  49. Marsden, T., Stirling, M. and Lang, C. (2018), "High temperature test method for polymer pipes", Polym. Test., 68, 309-314. https://doi.org/10.1016/j.polymertesting.2018.04.008.
  50. Martins, J.D.N., Freire, E. and Hemadipour, H. (2009), "Applications and market of PVC for piping industry", Polimeros, 19(1), 58-62. https://doi.org/10.1590/S0104-14282009000100014.
  51. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539. https://doi.org/10.12989/acc.2017.5.5.539.
  52. Mishra, A., Mehta, A., Basu, S., Shetti, N.P., Reddy, K.R. and Aminabhavi, T.M. (2019), "Graphiic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review", Carbon, 149, 693-721. https://doi.org/10.1016/j.carbon.2019.04.104.
  53. Morcous, G., Cho, Y., El-Safty, A. and Chen, G. (2010), "Structural behavior of FRP sandwich panels for bridge decks", KSCE J. Civil Eng., 14(6), 879-888. https://doi.org/10.1007/s12205-010-1025-4.
  54. Morgado, T., Correia, J.R., Silvestre, N. and Branco, F.A. (2018), "Experimental study on the fire resistance of GFRP pultruded tubular beams", Compos. Part B Eng., 139, 106-116. https://doi.org/10.1016/j.compositesb.2017.11.036.
  55. Moses, J.P., Harries, K.A., Earls, C.J. and Yulismana, W. (2006), "Evaluation of effective width and distribution factors for GFRP bridge decks supported on steel girders", J. Bridge Eng., 11(4), 401-409. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:4(401).
  56. Murray, P.L. (2000), U.S. Patent No. 6,130,268. U.S.
  57. Naik, R.K., Panda, S.K. and Racherla, V. (2020), "A new method for joining metal and polymer sheets in sandwich panels for highly improved interface strength", Compos. Struct., 251, 112661. https://doi.org/10.1016/j.compstruct.2020.112661.
  58. Nguyen, K.T., Navaratnam, S., Mendis, P., Zhang, K., Barnett, J. and Wang, H. (2020), "Fire safety of composites in prefabricated buildings: From fibre reinforced polymer to textile reinforced concrete", Compos. Part B Eng., 187, 107815. https://doi.org/10.1016/j.compositesb.2020.107815.
  59. Pan, Y., Zhang, Y., Zhang, D. and Yang, H. (2021), "Effect of polymer and conventional molds on the aesthetical surface quality of concretes", Constr. Build. Mater., 302, 124375. https://doi.org/10.1016/j.conbuildmat.2021.124375.
  60. Pattanaik, S.C. and Garg, R.P. (2008), "Methods of repair", in Construction World, ed. 139-144.
  61. Pearson, S. and Patel, R.G. (2002), "Repair of concrete in highway bridges-A practical guide", Application Guide AG 43.
  62. Plunkett, J.D. (1997), "Fiber-reinforced polymer honeycomb short span bridge for rapid installation", Kansas Struct. Compos., Inc, Russel, Kansas.
  63. Rajasarkka, J., Pernica, M., Kuta, J., Lasnak, J., Simek, Z. and Blaha, L. (2016), "Drinking water contaminants from epoxy resin-coated pipes: A field study", Water Res., 103, 133-140. https://doi.org/10.1016/j.watres.2016.07.027.
  64. Rebeiz, K.S. (1995), "Time-temperature properties of polymer concrete using recycled PET", Cement Concrete Compos., 17(2), 119-124. https://doi.org/10.1016/0958-9465(94)00004-I.
  65. Reis, E.M. and Rizkalla, S.H. (2008), "Material characteristics of 3-D FRP sandwich panels", Constr. Build. Mater., 22(6), 1009-1018. https://doi.org/10.1016/j.conbuildmat.2007.03.023.
  66. Saleh, T.A., Shetti, N.P., Shanbhag, M.M., Reddy, K.R. and Aminabhavi, T.M. (2020), "Recent trends in functionalized nanoparticles loaded polymeric composites: An energy application.", Mater. Sci. Energy Tech., 3, 515-525. https://doi.org/10.1016/j.mset.2020.05.005.
  67. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043.
  68. Sari, A. (2014), "Composites of polyethylene glycol (PEG600) with gypsum and natural clay as new kinds of building PCMs for low temperature-thermal energy storage", Energy Build., 69, 184-192. https://doi.org/10.1016/j.enbuild.2013.10.034.
  69. Schmidleithner, C. and Kalaskar, D.M. (2018), "Stereolithography", 3D Printing, ed.
  70. Simoncello, N., Zampieri, P., Gonzalez-Libreros, J. and Pellegrino, C. (2019), "Experimental behaviour of damaged masonry arches strengthened with steel fiber reinforced mortar (SFRM)", Compos. Part B Eng., 177, 107386. https://doi.org/10.1016/j.compositesb.2019.107386.
  71. Skjevrak, I., Due, A., Gjerstad, K.O. and Herikstad, H. (2003), "Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water", Water Res., 37(8), 1912-1920. https://doi.org/10.1016/S0043-1354(02)00576-6.
  72. Skripkiunas, G., Grinys, A. and Miskinis, K. (2009), "Damping properties of concrete with rubber waste additives", Mater. Sci., 15(3), 266-272.
  73. Sullivan. H.W. and Mack. W.A. (1999), "Polymeric compositions and methods for making construction materials from them", USA Patent.
  74. Tapkin, S. (2008), "The effect of polypropylene fibers on asphalt performance", Build. Envir., 43(6), 1065-1071. https://doi.org/10.1016/j.buildenv.2007.02.011.
  75. Tavares, C.M.L., Ribeiro, M.C.S., Ferreira, A.J.M. and Guedes, R.M. (2002), "Creep behaviour of FRP-reinforced polymer concrete", Compos. Struct., 57(1-4), 47-51. https://doi.org/10.1016/S0263-8223(02)00061-2.
  76. Teijido, R., Ruiz-Rubio, L., Echaide, A.G., Vilas-Vilela, J.L., Lanceros-Mendez, S. and Zhang, Q. (2022), "State of the art and current trends on layered inorganic-polymer nanocomposite coatings for anticorrosion and multi-functional applications", Prog. Organ. Coat., 163, 106684. https://doi.org/10.1016/j.porgcoat.2021.106684.
  77. Thomas, B.S. and Gupta, R.C. (2016), "A comprehensive review on the applications of waste tire rubber in cement concrete", Renew. Sustain. Energy Rev., 54, 1323-1333. https://doi.org/10.1016/j.rser.2015.10.092.
  78. Tokyay, M., Wasti, Y. and Polat, U. (2005), "Use of polymers in civil engineering applications", Polym. Constr..
  79. Tolinski, M. (2006), "Real improvements for" fake wood", Plast. Eng., 62(6), 32-34.
  80. Tolinski, M. (2008), "Building new opportunities for plastics-Plastics provide solutions for resilient, low-cost buildings and infrastructure", Plast. Eng., 64(9), 6. https://doi.org/10.1002/j.1941-9635.2008.tb00374.x
  81. Weyers, R.E., Prowell, B.D., Sprinkel, M.M. and Vorster, M. (1993), "Concrete bridge protection, repair, and rehabilitation relative to reinforcement corrosion: A methods application manual", Contract, 100, 103.
  82. Winsen (2016), "Case study prepared by the boston consulting group as part of the future of construction project at the world economin forum: Demostrating the viability of 3D printing at construction scale".
  83. World Health Organization (2011), "Guidelines for drinking-water quality fourth edition", WHO Chronic., 38, 104-108.
  84. Young, R.J. and Lovell, P.A. (1991), "Introduction to Polymers", Chapman and Hall, Ed 2, 292. https://doi.org/10.1002/pi.4990270217.
  85. Zia, K.M., Bhatti, H.N. and Bhatti, I.A. (2007), "Methods for polyurethane and polyurethane composites, recycling and recovery: A review", React. Func. Polym., 67(8), 675-692. https://doi.org/10.1016/j.reactfunctpolym.2007.05.004.