DOI QR코드

DOI QR Code

Photocatalytic Membrane for Contaminants Degradation: A Review

오염물질 분해를 위한 광촉매 분리막: 총설

  • Kahkahni, Rabea (Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 라비아 카갛니 (연세대학교 언더우드학부 융합과학공학부) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2022.02.14
  • Accepted : 2022.02.23
  • Published : 2022.02.28

Abstract

Growing industrialization leads to severe water pollution. Organic effluents from pharmaceuticals and textile industries released in wastewater adversely affect the environment and human health. Presence of antibiotics used for antibacterial treatment in wastewater leads to the growth of drug resistance bacteria, which is very harmful for human being. Various small organic molecules are used for the preparation of organic dye molecules in the textile industries. These molecules hardly degrade, which is present in the wastewater effluents from printing and dyeing industries. In order to address these problems, photoactive catalyst is embedded in the membrane and wastewater are passed through it. Through this process, organic molecules are photodegraded and at the same time, the degraded compounds are separated by the membrane. Titanium dioxide (TiO2) is a semiconductor which behave as excellent photocatalyst. Photocatalytic ability is enhanced by the making its composite with other transition metal oxide and incorporated into polymeric membrane. In this review, the degradation of dye and drug molecules by photocatalytic membrane are discussed.

성장하는 산업화는 심각한 수질 오염으로 이어진다. 폐수로 배출되는 약품과 섬유산업에서 나오는 유기배출물은 환경과 생명에게 악영향을 미친다. 항균치료에 사용되는 항생제가 폐수에 존재하면 인체에 매우 해로운 약제 내성균의 성장을 야기하게 된다. 섬유산업에서 사용되는 유기염료 분자의 제조에는 다양한 유기 저분자가 사용된다. 이러한 분자들은 인쇄 및 염색 산업의 폐수 배출물에 존재하여 분해가 잘 이루지지 않는다. 이러한 문제들을 해결하기 위해 광분해성 촉매를 분리막에 도입하고 폐수를 처리한다. 이 과정을 통해 유기 분자는 광분해되며 동시에 분해된 화합물들은 분리막을 통과하여 분리된다. 이산화티타늄(TiO2)은 뛰어난 광촉매 역할을 하는 반도체이다. 다른 전이 금속 산화물과 화합물을 만들고 고분자 막에 도입하여 광촉매 능력을 증가시킨다. 본 총설에서는 광촉매성 분리막에 의한 염료 및 약물 분자의 분해에 대해 논의한다.

Keywords

Acknowledgement

This work was supported by the Material & Component Technology Development Program (20010846, Development of nano sized biofilter and module for virus removal) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. H. Zhao, X. Yang, R. Xu, J. Li, S. Gao, and R. Cao, "CdS/NH2-UiO-66 hybrid membrane reactors for the efficient photocatalytic conversion of CO2", J. Mater. Chem. A, 6, 20152 (2018). https://doi.org/10.1039/c8ta05970e
  2. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, "Environmental Applications of Semiconductor Photocatalysis", Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  3. J. Zhao, W. Zhu, X. Wang, L. Liu, J. Yu, and B. Ding, "Environmentally benign modification of breathable nanofibrous membranes exhibiting superior waterproof and photocatalytic self-cleaning properties", Nanoscale Horiz., 4, 867 (2019). https://doi.org/10.1039/c8nh00480c
  4. W. Kang, F. Li, Y. Zhao, C. Qiao, J. Ju, and B. Cheng, "Fabrication of porous Fe2O3/PTFE nanofiber membranes and their application as a catalyst for dye degradation", RSC Adv., 6, 32646 (2016). https://doi.org/10.1039/c5ra27879a
  5. J. Y. Park, "Hybrid Water/Wastewater Treatment Process of Membrane and Photocatalyst", Membr. J., 28, 143 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.3.143
  6. H. S. Zakria, M. H. D. Othman, R. Kamaludin, S. H. Sheikh Abdul Kadir, T. A. Kurniawan, and A. Jilani, "Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity", RSC Adv., 11, 6985 (2021). https://doi.org/10.1039/D0RA10964A
  7. R. Zhang, X. Wang, J. Song, Y. Si, X. Zhuang, J. Yu, and B. Ding, "In situ synthesis of flexible hierarchical TiO2 nanofibrous membranes with enhanced photocatalytic activity", J. Mater. Chem. A, 3, 22136 (2015). https://doi.org/10.1039/C5TA05442G
  8. A. Rizwan, J. K. Kim, J. H. Kim, and J. Kim, "In-situ TiO2 Formation and Performance on Ceramic Membranes in Photocatalytic Membrane Reactor", Membr. J., 27, 328 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.4.328
  9. M. L. Liu, J. L. Guo, S. Japip, T. Z. Jia, D. D. Shao, S. Zhang, W. J. Li, J. Wang, X. L. Cao, and S. P. Sun, "One-step enhancement of solvent transport, stability and photocatalytic properties of graphene oxide/polyimide membranes with multifunctional cross-linkers", J. Mater. Chem. A, 7, 3170 (2019). https://doi.org/10.1039/c8ta11372f
  10. Y. Cui, Z. Jiang, C. Xu, M. Zhu, W. Li, and C. Wang, "Preparation, filtration, and photocatalytic properties of PAN@g-C3N4fibrous membranes by electrospinning", RSC Adv. 11, 19579 (2021). https://doi.org/10.1039/D1RA03234H
  11. W. Han, Y. Tang, T. Wu, and Q. Wu, "Synthesis of an ultra-thin Ni-membrane/ZnO-nanorod grass clump-like composite and its enhanced photocatalysis", New J. Chem., 44, 11752 (2020). https://doi.org/10.1039/c9nj06014f
  12. S. Lee, Y. Park, J. H. Lee, and R. Patel, "Visible Light-based Photocatalytic Degradation by Transition Metal Oxide", Membr. J., 29, 299 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.299
  13. D. Wu, W. Wang, T. W. Ng, G. Huang, D. Xia, H. Y. Yip, H. K. Lee, G. Li, T. An, and P. K. Wong, "Visible-light-driven photocatalytic bacterial inactivation and the mechanism of zinc oxysulfide under LED light irradiation", J. Mater. Chem. A, 4, 1052 (2016). https://doi.org/10.1039/C5TA08044D
  14. W. Hong, C. Li, T. Tang, H. Xu, Y. Yu, G. Liu, F. Wang, C. Lei, and H. Zhu, "The photocatalytic activity of the SnO2/TiO2/PVDF composite membrane in rhodamine B degradation", New J. Chem., 45, 2631 (2021). https://doi.org/10.1039/D0NJ04764C
  15. P. M. Martins, R. Miranda, J. Marques, C. J. Tavares, G. Botelho, and S. Lanceros-Mendez, "Comparative efficiency of TiO2 nanoparticles in suspension vs. immobilization into P(VDF-TrFE) porous membranes", RSC Adv., 6, 12708 (2016). https://doi.org/10.1039/C5RA25385C
  16. M. Shang, W. Wang, S. Sun, E. Gao, Z. Zhang, L. Zhang, and R. O'Hayre, "The design and realization of a large-area flexible nanofiber-based mat for pollutant degradation: An application in photocatalysis", Nanoscale, 5, 5036 (2013). https://doi.org/10.1039/c3nr00503h
  17. Q. Zhang, X. Chen, H. Wang, X. Bai, X. Deng, Q. Yao, J. Wang, B. Tang, W. Lin, and S. Li, "Controllable synthesis of peapod-like TiO2@GO@C electrospun nanofiber membranes with enhanced mechanical properties and photocatalytic degradation abilities towards methylene blue", New J. Chem., 44, 3755 (2020). https://doi.org/10.1039/c9nj06249a
  18. Y. Zhang and P. Li, "Photocatalytic membranes prepared by embedding porous Zr-doped SiO2 shell/TiO2 core particles with expanded channels into polyvinylidene fluoride for cleaning wastewater", RSC Adv., 5, 98118 (2015). https://doi.org/10.1039/C5RA16319F
  19. J. Y. Huh, J. Lee, S. Z. A. Bukhari, J. H. Ha, and I. H. Song, "Development of TiO2-coated YSZ/silica nanofiber membranes with excellent photocatalytic degradation ability for water purification", Sci. Rep., 10, 17811 (2020). https://doi.org/10.1038/s41598-020-74637-1
  20. Q. Li, H. Kong, R. Jia, J. Shao, and Y. He, "Enhanced catalytic degradation of amoxicillin with TiO2- Fe3O4 composites: Via a submerged magnetic separation membrane photocatalytic reactor (SMSMPR)", RSC Adv., 9, 12538 (2019). https://doi.org/10.1039/c9ra00158a
  21. H. Liang, C. Lv, H. Chen, L. Wu, and X. Hou, "Facile synthesis of chitosan membranes for visible-light-driven photocatalytic degradation of tetracycline hydrochloride", RSC Adv., 10, 45171 (2020). https://doi.org/10.1039/d0ra08358e
  22. L. Thi Thanh Nhi, L. Van Thuan, D. My Uyen, M. H. Nguyen, V. T. Thu, D. Q. Khieu, and L. H. Sinh, "Facile fabrication of highly flexible and floatable Cu2O/rGO on Vietnamese traditional paper toward high-performance solar-light-driven photocatalytic degradation of ciprofloxacin antibiotic", RSC Adv., 10, 16330 (2020). https://doi.org/10.1039/d0ra01854f
  23. Q. Xu, Z. Song, S. Ji, G. Xu, W. Shi, and L. Shen, "The photocatalytic degradation of chloramphenicol with electrospun Bi2O2CO3-poly(ethylene oxide) nanofibers: The synthesis of crosslinked polymer, degradation kinetics, mechanism and cytotoxicity", RSC Adv., 9, 29917 (2019). https://doi.org/10.1039/c9ra06346c
  24. X. Wei, H. Zhu, J. Xiong, W. Huang, J. Shi, S. Wang, H. Song, Q. Feng, and K. Zhong, "Anti-algal activity of a fluorine-doped titanium oxide photocatalyst againstMicrocystis aeruginosa and its photocatalytic degradation", New J. Chem., 45, 17483 (2021). https://doi.org/10.1039/D1NJ02873A
  25. H. Wu, D. Chen, N. Li, Q. Xu, H. Li, J. He, and J. Lu, "Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible-light photocatalytic removal of NO", Nanoscale, 8, 12066 (2016). https://doi.org/10.1039/C6NR02955H
  26. H. Younas, J. Shao, Y. He, G. Fatima, S. T. A. Jaffar, and Z. U. R. Afridi, "Fouling-free ultrafiltration for humic acid removal", RSC Adv., 8, 24961 (2018). https://doi.org/10.1039/c8ra03810d