고색순도 유기전계발광다이오드 구현을 위한 다중공명효과 열활성지연형광 소재 연구 동향

  • 이찬희 (동국대학교 융합에너지신소재공학전공) ;
  • 이세연 (동국대학교 융합에너지신소재공학전공)
  • Published : 2022.04.01

Abstract

Keywords

References

  1. W. Helfrich and W. G. Schneider, Phys. Rev. Lett. , 14, 299 (1965). https://doi.org/10.1016/0031-9163(65)90210-6
  2. C. W. Tang and S. A. Van sylke, Appl. Phys. Lett. , 51, 913, (1987). https://doi.org/10.1063/1.98799
  3. B. W. D'Andrade and S. R. Forrest, Adv. Mater. , 16, 1585 (2004). https://doi.org/10.1002/adma.200400684
  4. T. D. Anthopoulos, J. P. J. Markham, E. B. Namdas, and I. D. W. Samuel, Appl. Phys. Lett. , 82, 4824 (2003). https://doi.org/10.1063/1.1586999
  5. S. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett., 69, 2160 (1996). https://doi.org/10.1063/1.117151
  6. M. A. Baldo, B. E. Thompson, and S. R. Forrest, Nature , 403, 750 (2000). https://doi.org/10.1038/35001541
  7. C. Adachi, M. A. Baldo, S. R. Forrest, and M. E. Thompson, J. Appl. Phys., 11, 285 (1999).
  8. Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature , 440, 908 (2006). https://doi.org/10.1038/nature04645
  9. C. Adachi, M. A. Baldo, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett., 77, 904 (2000). https://doi.org/10.1063/1.1306639
  10. A. Maciejewski, M. Szymanski, and R. P. Steer, J. Phys. Chem., 90, 6314 (1986). https://doi.org/10.1021/j100281a051
  11. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature , 492, 234 (2012). https://doi.org/10.1038/nature11687
  12. A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, Adv. Mater. , 21, 4802 (2009). https://doi.org/10.1002/adma.200900983
  13. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature , 395, 151 (1998). https://doi.org/10.1038/25954
  14. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys., 90, 5048 (2001). https://doi.org/10.1063/1.1409582
  15. S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B: Condens. Matter Mater. Phys., 75, 125328 (2007). https://doi.org/10.1103/physrevb.75.125328
  16. J. Kalinowskia and J. Mezyk, J. Appl. Phys. , 98, 063532 (2005). https://doi.org/10.1063/1.2060955
  17. M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B, 62, 10967 (2000). https://doi.org/10.1103/PhysRevB.62.10967
  18. Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, Nat. Photonics, 8, 326 (2014). https://doi.org/10.1038/nphoton.2014.12
  19. S. Y. Lee, T. Yasuda, H. Nomura, and C. Adachi, Appl. Phys. Lett., 101, 093306 (2012). https://doi.org/10.1063/1.4749285
  20. S. Y. Lee, T. Yasuda, H. Komiyama, J. Lee, and C. Adachi, Adv. Mater., 28, 4019 (2016). https://doi.org/10.1002/adma.201505026
  21. S. H. Choi, C. H. Lee, C. Adachi, and S. Y. Lee, Dyes Pigm, 171, 107775 (2019). https://doi.org/10.1016/j.dyepig.2019.107775
  22. S. H. Choi, C. H. Lee, C. Adachi, and S. Y. Lee, Dyes Pigm, 172, 107849 (2020). https://doi.org/10.1016/j.dyepig.2019.107849
  23. C. H. Lee, S. H. Choi, S. J. Oh, J. H. Lee, J. W. Shim. C. Adachi, and S. Y. Lee, RSC Adv. , 10, 42897 (2020). https://doi.org/10.1039/d0ra07865d
  24. T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, and T. Ikuta, Adv. Mater., 28, 2777 (2016). https://doi.org/10.1002/adma.201505491
  25. Y. Zhang, D. Zhang, J. Wei, Z. Liu, Y. Lu, and L. Duan, Angew. Chem. Int. Ed., 58, 16912 (2019). https://doi.org/10.1002/anie.201911266
  26. M. Yang, S. Shikita, H. Min, I. S. Park, H. Shibata, N. Amanokura, and T. Yasuda, Angew. Chem. Int. Ed., 60, 1 (2021). https://doi.org/10.1002/anie.202015604
  27. Y. Zhang, D. Zhang, J. Wei, X. Hong, Y. Lu, D. Hu, G. Li, Z. Liu, Y. Chen, and L. Duan, Angew. Chem. Int. Ed., 59, 17499 (2020). https://doi.org/10.1002/anie.202008264
  28. P. Jiang, L. Zhan, X. Cao, X. Lv, S. Gong, Z. Chen , C. Zhou, Z. Huang, F. Ni, Y. Zou, and C. Yang, Adv. Optical Mater., 2100825 (2021).
  29. Y. Xu, Q. Wang, X. Cai, C. Li, and Y. Wang, Adv. Mater. , 33, 2100652 (2020).
  30. Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, and T. Hatakeyama, Nat. Photonics, 13, 678 (2019). https://doi.org/10.1038/s41566-019-0476-5
  31. M. Nagata, H. Min, E. Watanabe, H. Fukumoto, Y. Mizuhata, N. Tokitoh, T. Agou, and T. Yasuda, Angew. Chem. Int. Ed., 60, 20280 (2021). https://doi.org/10.1002/anie.202108283
  32. M. Yang, I. S. Park, and T. Yasuda, J. Am. Chem. Soc., 142, 19468 (2020). https://doi.org/10.1021/jacs.0c10081
  33. Y. Zhang, D. Zhang, T. Huang, A. J. Gillett, Y. Liu, D. Hu, L. Cui, Z. Bin, G. Li, J. Wei, and L. Duan, Angew. Chem. Int. Ed., 60, 20498 (2021). https://doi.org/10.1002/anie.202107848
  34. Y. Yuan, X. Tang, X. Y. Du, Y. Hu, Y. J. Yu, Z. Q. Jiang, L. S. Liao, and S. T. Lee, Adv. Optical Mater. , 7, 1801536 (2019). https://doi.org/10.1002/adom.201801536
  35. X. Li, Y. Z. Shi, K. Wang, M. Zhang, C. J. Zheng, D. M. Sun, G. L. Dai, X. CH. Fan, D. Q. Wang, W. Liu, Y. Q. Li, J. Yu, X. M. Ou, C. Adachi, and X. H. Zhang, ACS Appl. Mater. Interfaces , 11, 13472 (2019). https://doi.org/10.1021/acsami.8b19635
  36. D. Hall, S. M. Suresh, P. L. dos Santos, E. Duda, S. Bagnich, A. Pershin, PL. Rajamalli, D. B. Cordes, A. M. Z. Slawin, D. Beljonne, A. Kohler, I. D. W. Samuel, Y. Olivier, and E. Zysman-Colman, Adv. Optical Mater., 8, 1901627 (2020). https://doi.org/10.1002/adom.201901627
  37. H. L. Lee, W. J. Chung, and J. Y. Lee, Small , 16, 1907569 (2020). https://doi.org/10.1002/smll.201907569