References
- Abusharar, S.W. and Han, J. (2011), "Two-dimensional deep-seated slope stability analysis of embankments over stone column-improved soft clay", J. Eng. Geol., 120(1-4), 103-110. https://doi.org/10.1016/j.enggeo.2011.04.002.
- Adalier, K., Elgamal, A., Meneses, J. and Baez, J. (2003), "Stone columns as liquefaction countermeasure in non-plastic silty soils", Soil Dyn. Earthq. Eng., 23(7), 571-584. https://doi.org/10.1016/S0267-7261(03)00070-8.
- Aghili. E., Hosseinpour, I., Jamshidi, R. and Ahmadi, H. (2021), "Behavior of granular column-improved clay under cyclic shear loading", Transport Geotech., 31, https://doi.org/10.1016/j.trgeo.2021.100654.
- Aljanabi, Q.A., Chik, Z, Allawi, M.F., El-Shafie, A.H., Ahmed, A.N. and El-Shafie, A. (2017), "Support vector regression-based model for prediction of behavior Stone column parameters in soft clay under highway embankment", Neural Comput. Appl., https://doi.org/10.1007/s00521-016-2807-5.
- Alkayem. N.F., Cao, M., Zhang, Y., Bayat, M. and Su, Z. (2018), "Structural damage detection using finite element model updating with evolutionary algorithms: a survey", Neural Comput, Appl., 30(2), 389-411. https://doi.org/10.1007/s00521-017-3284-1.
- Alkhorshid, N.R., Araujo, L.S., Palmeira, E.M. and Zornberg, J.G. (2019), "Large-scale load capacity tests on a geosynthetic encased column", Geotext. Geomembranes., 47(5), 632-641. https://doi.org/10.1016/j.geotexmem.2019.103458.
- Andreou, P. and Papadopoulos, V. (2014), "Factors affecting the settlement estimation of Stone column reinforced soils", Geotech. Geol. Eng., 32, 1175-1185. https://doi.org/10.1007/s10706-014-9788-x.
- Ardakani, A., Gholampoor, N., Bayat, M. and Bayat, M. (2018), "Evaluation of monotonic and cyclic behavior of geotextile encased stone columns", Struct. Eng. Mech., 65(1), 81-89. https://doi.org/10.12989/sem.2018.65.1.081.
- Asgari, A., Oliaei, M. and Bagheri, M. (2013), "Numerical simulation of improvement of a liquefiable soil layer using Stone column and pile-pinning techniques", Soil Dyn. Earthq. Eng., 51, 77-96. https://doi.org/10.1016/j.soildyn.2013.04.006.
- Ashford, S.A., Rollins, K.M. and Baez, J.I. (2000), "Comparison of deep foundation performance in improved and non-improved ground using blast induced liquefaction", Proc., Geo-Denver 2000, Soil Dynamics and Liquefaction. ASCE Geotech. Special Publ., 23, 20-34.
- Barksdale, R.D. and Bachus, R.C. (1983), "Design and Construction of Stone Columns", Report FHWA.RD-83.026. National Information Service, Springfield, Virginia.
- Basack, S., Indraratna, B., Rujikiatkamjorn, C. and Siahaan. F. (207), "Modeling the Stone column behavior in soft ground with special emphasis on lateral deformation", J. Geotech. Geoenviron. Eng., 143(6), 04017016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001652.
- Bergado, D.T., Singh, N., Sim, S.H., Panichayatum, B., Sampaco, C.L. and Balasubramaniam, A.S. (1990), "Improvement of soft Bangkok clay using vertical geotextile band drains compared with granular piles", Geotext. Geomembranes, 9(3), 203-231. https://doi.org/10.1016/0266-1144(90)90054-G.
- Cengiz, C. and Guler, E. (2018), "Seismic behavior of geosynthetic encased columns and ordinary stone columns" Geotext. Geomembranes, 46(1), 40-51. https://doi.org/10.1016/j.geotexmem.2017.10.001.
- Cengiz, C., Kilic, I.E. and Guler, E. (2019), "On the shear failure mode of granular column embaseded unit cells subjected to static and cyclic shear loads", Geotext. Geomembranes, 47(2), 193-202. https://doi.org/10.1016/j.geotexmem.2018.12.011.
- Chakraborty, A. and Goswami, D. (2017), "Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN)", Arab. J. Geosci., 10, 385. https://doi.org/10.1007/s12517-017-3167-x.
- Chen, J.F., Li, L.Y., Xue, J.F. and Feng, S.Z. (2015), "Failure mechanism of geosynthetic encased gravel columns in soft soils under embankment", Geotext. Geomembranes, 43(5), 424-431. https://doi.org/10.1016/j.geotexmem.2015.04.016.
- Chen, J.F., Li, L.Y., Zhang, Z., Zhang, X., Xu, C., Rajesh, S. and Feng, Z. S. (2020) "Centrifuge modeling of geosynthetic-encased stone column-supported embankment over soft clay" Geotext. Geomembranes, https://doi.org/10.1016/j.geotexmem.2020.10.021.
- Choobbasti, A.J. and Pichka, H. (2012). "Improvement of soft clay using installation of geosynthetic-encased stone columns: numerical study" Arab. J. Geosci., https://doi.org/10.1007/s12517-012-0735-y.
- Christoulas, S., Giannaros, C. and Tsiambaos, G. (1997), "Stabilization of embankment foundations by using stone columns", Geotech. Geolo. Eng., 15, 247-258. https://doi.org/10.1007/BF00880828.
- Dar, L.A. and Yousuf Shah, M. (2020), "Deep-seated slope stability analysis and development of simplistic FOS Evaluation models for stone column-supported embankments", T. Infrastruct. Geotechnology, https://doi.org/10.1007/s40515-020-00134-7.
- Das, A.K. and Deb, K. (2016), "Modeling of stone columnsupported embankment under axi-symmetric condition", Geotech. Geol. Eng., https://doi.org/10.1007/s10706-016-0136-1.
- Das, A.K. and Deb, K. (2019), "Response of stone column-improved ground under c-/ϕ soil embankment", Soils Found., 59, 617-632. https://doi.org/10.1016/j.sandf.2019.01.003.
- Das, A.K. and Deb, K. (2018), "Experimental and 3D numerical study on time dependent behavior of Stone column-supported embankments", Int. J. Geomech., ASCE., 18(4), 1-16. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001110.
- Das, M. and Dey, A.K. (2017), "Determination of bearing capacity of stone column with application of neuro-fuzzy system", KSCE J. Civ. Eng., 1-7. https://doi.org/10.1007/s12205-017-1497-6.
- Das, M. and Dey, A.K. (2017), "Prediction of bearing capacity of stone columns placed in soft clay using ANN model", Geotech. Geol. Eng., https://doi.org/10.1007/s10706-017-0436-0.
- Das, M. and Dey, A.K. (2018), "Prediction of bearing capacity of stone columns placed in soft clay using SVR model", Arab. J. Sci. Eng., https://doi.org/10.1007/s13369-018-3513-7.
- Dash, S.K. and Bora, M.C. (2013), "Influence of geosynthetic encasement on the performance of gravel columns floating in soft clay", Can. Geotech. J., 50(7), 754-765. https://doi.org/10.1139/cgj-2012-0437.
- Deb, K. and Majee, A. (2014), "Probability-based design charts for stone column-improved ground", Geomech. Eng., 7(5), 539-552. https://doi.org/10.12989/gae.2014.7.5.539.
- Debnath, P. and Dey, A.K. (2018), "Prediction of bearing capacity of geogrid-reinforced stone columns using support vector regression", Int. J. Geomech., 18(2), 04017147. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001067.
- Demir, A. and Sarici, T. (2017), "Bearing capacity of footing supported by geogrid encased stone columns on soft soil", Geomech. Eng., 12(3), 417-439. https://doi.org/10.12989/gae.2017.12.3.417.
- Dinavand, R. and Ardakani, A. (2019), "Behavior of geosyntheticencased granular column in silty sand soil by direct shear test", Amirkabir. J. Civ. Eng., 50(5), 961-972. https://doi.org/10.22060/ceej.2017.12979.5308.
- Emami, M. and Yasrebi, S. (2014), "Application of artificial neural networks in interpretation of pressuremeter test results", Modares. Civ. Eng. J., 14(20), 11-25. http://mcej.modares.ac.ir/article-16-5107-fa.html.
- Etezad, M., Hanna, A.M. and Ayadat, T. (2015), "Bearing capacity of a group of Stone columns in soft soil", Int. J. Geomech. ASCE., 15(2), https://doi.org/10.1061/(ASCE)GM.1943-5622.0000393.
- Fox, Z.P. (2011), "Critical State, Dilatancy and Particle Breakage of Mine Waste Rock", Master's thesis. Colorado State University, Fort Collins, USA.
- Garnier, J., Gaudin, C., Springman, S.M., Culligan, P.J., Goodings, D., Konig, D., Kutter, B., Phillips, R., Randolph, M.F. and Thorel, L. (2007), "Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling", Int. J. Phys. Model. Geotech., 7(3), 1-24. https://doi.org/10.1680/ijpmg.2007.070301.
- Gniel, J. and Bouazza, A. (2010), "Construction of geogrid encased Stone columns: a new proposal based on laboratory testing", Geotext. Geomembranes, 28(1), 108-118. https://doi.org/10.1016/j.geotexmem.2009.12.012.
- Hagan, M.T. and Menhaj, M.B. (1994), "Training feedforward networks with the marquartdt algorithm", IEEE T. Neural Networ., 5(6), 989-992. https://doi.org/10.1109/72.329697
- Han, J., Sheth, A.R., Porbaha, A. and Shen, S.L. (2004), "Numerical analysis of embankment stability over deep mixed foundations. Geotechnical Engineering for Transportation Projects", Proceedings of Geo-Trans 2004, 126 II. Geotechnical Special Publication, Los Angeles, CA, United States.
- He, S. and Li, J. (2008), "Modeling nonlinear elastic behavior of reinforced soil using artificial neural networks", Appl. Soft Comput., 9(3), 954-961. https://doi.org/10.1016/j.asoc.2008.11.013.
- Hong, Y.S., Wu, C.S. and Yu, S.Y. (2016), "Model tests on geotextile-encased granular columns under 1-g and undrained conditions" Geotext. Geomembranes, 44, 13-27. https://doi.org/10.1016/j.geotexmem.2015.06.006.
- Hong, Y.S., Wu, C.S., Kou, C.M. and Chang, C.H. (2017), "A numerical analysis of a fully penetrated encased granular column", Geotext. Geomembranes, 45(5), 391-405. https://doi.org/10.1016/j.geotexmem.2017.05.002.
- Hosseinpour, I., Riccio, M. and Almeida, M.S.S. (2014), "Numerical evolution of a granular column reinforced by geosynthetics using encasement and laminated disks", Geotext. Geomembranes, 42(4), 363-373. https://doi.org/10.1016/j.geotexmem.2014.06.002.
- Hughes, J.M.O., Withers, N.J. and Greenwood, D.A. (1975), "A field trial of the reinforcing effect of a granular column in soil", Geotechniq., 25(1), 31-44. https://doi.org/10.1680/geot.1975.25.1.31
- Karkush, M. and Jabba, A. (2019), "Improvement of soft soil using linear distributed floating stone column under foundation subjected to static and cyclic loading", Civ. Eng. J., 5(3), 702-711. https://doi.org/10.28991/cej-2019-03091280
- Khorshidi, N., Ansari, M. and Bayat, M. (2014), "An investigation of water magnetization and its influence on some concrete specificities like fluidity and compressive strength", Comput. Conceret, 13(5), 649-657. https://doi.org/10.12989/cac.2014.13.5.649.
- Lajevardi. S.H. and Enami. S. (2021), "Small scale behavior of stone columns encased by tires", Geomech. Eng., 25(5), 429-438. https://doi.org/10.12989/gae.2021.25.5.429.
- Lee, I.M. and Lee, J.H. (1996), "Prediction of pile bearing capacity using artificial neural networks", Comput. Geotech., 18(3), 189-200. https://doi.org/10.1016/0266-352X(95)00027-8.
- Li., L.Y., Rajesh, S. and Chen., J.F. (2020), "Centrifuge model tests on the deformation behavior of geosynthetic-encased stone column supported embankment under undrained condition", Geotext. Geomembranes, https://doi.org/10.1016/j.geotexmem.2020.11.003.
- Malarvizhi, S.N. and Ilamparuthi, K. (2007), "Comparative behaviour of encased stone column and conventional stone column", Soils Found., 47(5), 873-885. https://doi.org/10.3208/sandf.47.873.
- Malekpoor. M. and Poorebrahim. G. (2014), "Comparative study on the behavior of lime-soil columns and other types of stone columns", Geomech. Eng., 7(2), 133-148. https://doi.org/10.12989/gae.2014.7.2.133.
- Mashenwari, P. and Khatri, S. (2019), "Influence of inclusion of geosynthetic layer on response of combined footings on stone column reinforced earth beds", Geomech. Eng., 4(4), 263-279. https://doi.org/10.12989/gae.2012.4.4.263.
- Miranda, M. and Da Costa, A. (2016), "Laboratory analysis of encased stone columns", Geotext. Geomembranes, 44, 269-277. https://doi.org/10.1016/j.geotexmem.2015.12.001.
- Miranda, M., Da Costa, A., Castro, J. and Sagaseta, C. (2017), "Influence of geotextile encasement on the behaviour of stone columns: Laboratory study", Geotext. Geomembranes, 45, 14-22. https://doi.org/10.1016/j.geotexmem.2016.08.004.
- Mohanty, P. and Samanta M. (2015), "Experimental and numerical studies on response of the Stone column in layered soil", Int. J. Geosynth. Ground Eng., https://doi.org/10.1007/s40891-015-0029-z.
- Mohapatra, S.R., Rajagopal, K. and Sharma, J. (2016), "Direct shear tests on geosynthetic-encased granular columns", Geotext. Geomembranes, 44(3), 396-405. https://doi.org/10.1016/j.geotexmem.2016.01.002.
- Motalleb Nejad, M., Momeni, M.S. and Manahiloh, K.N. (2018), "Shear wave velocity and soil type microzonation using neural networks and geographic information system", Soil Dyn. Earthq. Eng., 104, 54-63. https://doi.org/10.1016/j.soildyn.2017.10.001.
- Murugesan, M. and Rajagopal, K. (2010), "Studies on the behaviour of single and group of geosynthetic encased stone columns", J. Geotech. Geoenviron. Eng., 136(1), 129-139. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000187.
- Murugesan, S. and Rajagopal, K. (2008), "Shear load tests on granular columns with and without geosynthetic encasement", Geotech. Test. J., 32(1), 35-44.
- Murugesan, S. and Rajagopal, K. (2010), "Studies on the behavior of single and group of geosynthetic encasemed granular columns", J. Geotec. Geoenviron. Eng., 136(1), 129-139. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000187.
- Naeini, S.A. and Gholampoor, N. (2014), "Cyclic behaviour of dry silty sand reinforced with a geotextile", Geotext. Geomembranes, 42(6), 611-619. https://doi.org/10.1016/j.geotexmem.2014.10.0
- Naeini, S.A. and Gholampoor, N. (2018), "Effect of geotextile encasement on the shear strength behavior of stone columntreated wet clays", Indian Geotech. J. https://doi.org/10.1007/s40098-018-0329-z.
- Najjar, Y.M. and Huang, C. (2007), "Simulating the stress-strain behavior of Georgia kaolin via recurrent neuronet approach", Comput. Geotech., 34(5), 346-361. https://doi.org/10.1016/j.compgeo.2007.06.006.
- Nasiri, M. and Hajiazizi, M. (2019), "An experimental and numerical investigation of reinforced slope using geotextile encased Stone column", Int. J. Geotech. Eng., https://doi.org/10.1080/19386362.2019.1651029.
- Pulko, B. and Logar, J. (2017), "Fully coupled solution for the consolidation of poroelastic soil around geosynthetic encased stone columns", Geotext. Geomembranes, 45(6), 616-626. https://doi.org/10.1016/j.geotexmem.2017.08.003.
- Rashidian, V. and Hassanlourad, M. (2013), "Predicting the shear behavior of cemented and uncemented carbonate sands using a genetic algorithm-based artificial neural network", Geotech. Geol. Eng., 2, 1-18. https://doi.org/10.1007/s10706-013-9646-2.
- Sadr, A., Kaliakin, V.N., Htaf. N. and Manahiloh, K.N. (2022), "Numerical study of soilbag columns and comparison to encased soil columns in loose sand", Comput. Geotech., 142, https://doi.org/10.1016/j.compgeo.2021.104588.
- Samui, P. (2013), "Liquefaction prediction using support vector machine model based on cone penetration data", Front Struct. Civ. Eng., 7(1), 72-82. https://doi.org/10.1007/s11709-013-0185-y.
- Shafigh, A., Ahmadi, H.R. and Bayat, M. (2014), "Seismic investigation of cyclic pushover method for regular reinforced concrete bridge", Struct. Eng. Mech., 78(1), 41-52 https://doi.org/10.12989/sem.2021.78.1.041.
- Shahin, M.A. (2010), "Intelligent computing for modeling axial capacity of pile foundations", Soil Dyn. Earthq. Eng., 47(2), 230-243. https://doi.org/10.1139/T09-094.
- Sitton, J.D., Zeinali, Y. and Zeinali, B.A. (2017), "Rapid soil classification using artificial neural networks for use in constructing compressed earth blocks", Constr. Build. Mater., 138, 214-221. https://doi.org/10.1016/j.conbuildmat.2017.02.006.
- Sivakumar, V., McKelvey, J., Graham, J. and Hughes, D. (2004), "Triaxial test on model sand columns in clay", Can. Geotech. J., 41(2), 299-312. https://doi.org/10.1139/t03-097.
- Smola, A.J. and Scholkopf, B. (2004), "A tutorial on support vector regression. Statistics and computing", Statist. Comput., 14(3), 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88.
- Soltangharaei. V., Anay, R., Assi, L., Bayat, M., Rose, J.R., Ziehl. P. (2020), "Analyzing acoustic emission data to identify cracking modes in cement paste using an artificial neural network", Constr. Build. Mater., 267, https://doi.org/10.1016/j.conbuildmat.2020.121047.
- Stoeber, J.N. (2012), "Effects of Maximum Particle Size and Sample Scaling on the Mechanical Behavior of Mine Waste Rock; a Critical State Approach", Master's Thesis. Colorado State University, Fort Collins, USA.
- Tabchouche, S., Mellas, M. and Bouassida, M. (2017), "On settlement prediction of soft clay reinforced by a group of Stone columns", Innov. Infrastruct. Solut., 2(1), https://doi.org/10.1007/s41062-016-0049-0.
- Tang, L., Zhang, X. and Ling, X. (2015), "Numerical simulation of centrifuge experiments on liquefaction mitigation of silty soils using stone columns", KSCE J. Civ. Eng., 20(2), 631-638. https://doi.org/10.1007/s12205-015-0363-7.
- Tarawneh, B. (2017), "Predicting standard penetration test N-value from cone penetration test data using artificial neural networks", Geosci. Front., 8(1), 199-204. https://doi.org/10.1016/j.gsf.2016.02.003.
- Vapnik, V. N., Golowich, S.E. and Smola, A. (1996), "Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing, Advances in Neural Information Processing Systems", Morgan Kaufmann, San Mateo.
- Wood, D.M., Dihoru, L., Sadek, T. and Lings. M. (2005), "A neural network for error prediction in a true triaxial apparatus with flexible boundaries", Comput. Geotech., 32(2), 59-71. https://doi.org/10.1016/j.compgeo.2005.01.003.
- Yoo, C. (2015), "Settlement behavior of embankment on geosynthetic-encased stone column installed soft ground. A numerical investigation", Geotext. Geomembranes, 43, 484-492. https://doi.org/10.1016/j.geotexmem.2015.07.014.
- Yoo, C. and Abbas, Q. (2020), "Laboratory investigation of the behavior of a geosynthetic encased Stone column in sand under cyclic loading", Geotext. Geomembranes, https://doi.org/10.1016/j.geotexmem.2020.02.002.
- Yoo, W., Kim, B. and Cho, W. (2014), "Model Test Study on the Behavior of Geotextile Encased Sand Pile in Soft Clay Ground" KSCE J. Civ. Eng., 19(3), 592-601. https://doi.org/10.1007/s12205-012-0473-4.
- Yu. Y., Wang. Z. and Sun. H.Y. (2020), "Optimal design of stone columns reinforced soft clay foundation considering design robustness", Geomech. Eng., 22(4), 305-318. https://doi.org/10.12989/gae.2020.22.4.305.
- Zhang, L. and Zhao, M. (2015), "Deformation analysis of geotextile-encased gravel columns", ASCE Int. J. Geomech., 15(3), 04014053. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000389
- Zhang, L., Xu, Z. and Zhou, S. (2020), "Vertical cyclic loading response of geosynthetic-encased stone column in soft clay" Geotext. Geomembranes, https://doi.org/10.1016/j.geotexmem.2020.07.006.
- Zhang, Z., Han, J. and Ye, G. (2014), "Numerical investigation on factors for deep-seated slope stability of stone columnsupported embankments over soft clay", J. Eng. Geol., 168, 104-113. https://doi.org/10.1016/j.enggeo.2013.11.004.
- Zhou, Y. and Kong, G. (2019), "Deformation analysis of geosynthetic-encased stone column-supported embankment considering radial bulging", Int. J. Geomech., 19(6), 04019057. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001426.
- Zhou, Y., Kong, G., Peng, H., Li, C., and Qin, H. (2019), "Visualization of bulging development of geosynthetic-encased stone column", Geomech. Eng. J., 18(3), 329-337 http://dx.doi.org/10.12989/gae.2019.18.3.329.