DOI QR코드

DOI QR Code

Post-pillars design for safe exploitation at Trepça hard rock mine (Kosovo) based on numerical modeling

  • Ibishi, Gzim (Department of Mining Engineering, Faculty of Geosciences, Mitrovica Isa Boletini University) ;
  • Genis, Melih (Department of Mining Engineering, Faculty of Engineering, Zonguldak Bülent Ecevit University) ;
  • Yavuz, Mahmut (Department of Mining Engineering, Faculty of Architecture and Engineering, Eskisehir Osmangazi University)
  • Received : 2021.09.18
  • Accepted : 2021.01.24
  • Published : 2022.03.10

Abstract

In the mine exploitation stage; one of the critical issues is the stability assessment of post-pillars. The instability of post-pillars leads to serious safety hazards in mining operations. The focus of this study is to assess the stability of post-pillars in the 130# stope in the central ore body at Trepça hard rock mine by employing both conventional (i.e., critical span curve) and numerical methods (i.e., FLAC3D). Moreover, a new numerical based index (i.e., Pillar Yield Ratio-PYR) was proposed. The aim of PYR index is to determine a border line between stable, potentially unstable, and failure state of post-pillars at a specific mine site. The critical value of pillar width to height ratio is 2.5 for deep production stopes (e.g., > 800 m). Results showed that pillar size, mining height and mining depth significantly have affected the post-pillar stability. The reliability of numerical based index (i.e., PYR) is verified based on empirical underground pillar stability graph developed by Lunder, 1994. The proposed pillar yield ratio index and pillar stability graph can be used as a design tool in new mining areas at Trepça hard rock mine and for other situations with similar geotechnical conditions.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Scientific Research Project Supporting Commission of Eskisehir Osmangazi University [grant number 201715A238].

References

  1. Abdellah, W., Mitri, H.S., Thibodeau, D. and Moreau-Verlan, L. (2012), "Stochastic evaluations of haulage drift unsatisfactory performance using random Monte-Carlo simulation", Int. J. Min. Eng., 4(1), 63-87. https://doi.org/10.1504/IJMME.2012.048000.
  2. Aydan, O., Tokashiki, N. and Genis, M. (2012), "Some considerations on yield (failure) criteria in rock mechanics", Proceedings of the 46th US Rock Mechanics Geomechanics Symposium, Chicago.
  3. Aydan, O., Ulusay, R. and Kawamoto, T. (1997), "Assessment of rock mass strength for underground excavations", Proceedings of the 36th US Rock Mechanics Symposium, New York.
  4. Barton, N. (2002), "Some new Q-value correlations to assist in site characterisation and tunnel design", Int. J. Roc. Mech. Min. Sci., 39(2), 185-216. https://doi.org/10.1016/S1365-1609(02)00011-4.
  5. Barton, N., Lien, R. and Lunde, J. (1974), "Engineering classification of rock masses for the design of tunnel support", Roc. Mech., 6(4), 189-236. https://doi.org/10.1007/BF01239496
  6. Bednarek, L. and Majcherczyk, T. (2020), "An analysis of rock mass characteristics which influence the choice of support", Geomech. Eng., 21(4), 371-377. https://doi.org/10.12989/gae.2020.21.4.371.
  7. Bieniawski, Z.T. (1978), "Determining rock mass deformability: experience from case histories", Int. J. Roc. Mech. Min. Sci. Geomech., 15, 237-247. https://doi.org/10.1016/0148-9062(78)90956-7
  8. Bieniawski, Z.T. (1989), "Engineering Rock Mass Classification", Wiley, New York.
  9. Emad, M.Z. (2017), "Numerical modelling approach for mine backfill", India Academy of Science, 42(9), 1595-1604. https://doi.org/10.1007/s12046-017-0702-0.
  10. Esterhuizen, E., Mark, C. and Murphy, M. (2010), "Numerical model calibration for simulation coal pillars, gob and overburden response", Proceeding of the 29th international conference on ground control in mining, Margantown.
  11. Forgan, C.B. (1950), "Ore deposits at the Stan Trg lead-zinc mine", Proceedings of the 18th International Geological Congress, London.
  12. Galera, J.M., Alvarez, M. and Bieniawski, Z.T. (2005), "Evaluation of the deformation modulus of rock masses: comparison of pressuremeter and dilatometer tests with RMR prediction", Proceedings of the ISP5-PRESSIO International symposium, Madrid.
  13. Gao, W. (2018), "Influence of interaction between coal and rock on the stability of strip coal pillar", Geomech. Eng., 14(5), 499-507. https://dx.doi.org/10.12989/gae.2018.14.5.499
  14. Genis, M. and Colak, B. (2015), "Stability Assessment of the Gokgol Karstic Cave (Zonguldak, Turkey) by Analytical and Numerical Methods", Roc. Mech. Roc. Eng., 48(6), 2383-2403. https://doi.org/10.1007/s00603-014-0700-z.
  15. Ghasemi, E., Kalhori, H. and Bagherpour, R. (2017), "Stability assessment of hard rock pillars using two intelligent classification techniques: a comperative study", Tunn. Undergr. Sp. Technol., 68, 32-37. https://doi.org/10.1016/j.tust.2017.05.012.
  16. Gokceoglu, C., Sonmez, H. and Kayabasi, A. (2003), "Predicting the deformation moduli of rock masses", Int. J. Roc. Mech. Min. Sci., 40, 701-710. https://doi.org/10.1016/S1365-1609(03)00062-5.
  17. Grimstad, E. and Barton, N. (1993), "Updating of the Q-system for NMT", Proceeding of the international symposium on sprayed concrete-modern use of wet mix sprayed concrete for underground support. Norwegian Concrete Association, Oslo, Norway.
  18. Hedly, D.G.F. and Grant, F. (1972), "Stope-and-pillar design for the Elliot lake uranium mines", Bull. Can. Inst. Min. Metall., 65, 37-44.
  19. Hemant, K., Debasis, D. and Chakravary, D. (2017), "Design of crown pillar thickness using finite element method and multivariate regression analysis", Int. J. Min. Sci. Technol., 27, 955-964. https://doi.org/10.1016/j.ijmst.2017.06.017.
  20. Hetemi, M. (2013), "Contribution to the optimal modeling of mine field opening from level XI to level XIII in Stan Trg mine", Ph.D. Dissertation. University of Prishtina, Prishtin Dissertation. University of Prishtina, Prishtina.
  21. Hoek, E. and Brown, E.T. (1997), "Practical estimates or rock mass strength", Int. J. Roc. Mech. Min. Sci. Gem. Abst., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X
  22. Hoek, E. and Diederichs, M.S. (2006), "Empirical estimation of rock mass modulus", Int. J. Roc. Mech. Min. Sci., 43(2), 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005.
  23. Ibishi, G. (2019), "Stability Assessment of Post Pillars in Cut-and-Fill Stoping Method at Trepca Underground Mine", Ph.D. Dissertation. Eskisehir Osmangazi University, Eskisehir.
  24. Idris, M.A., Saiang, D. and Nordlund, E. (2015), "Stochastic assessment of pillar stability at Laisvall mine using artificial neural network", Tunn. Undergr. Sp. Technol., 49, 307-319. https://doi.org/10.1016/j.tust.2015.05.003.
  25. Itasca. (2005), FLAC3D-Fast lagrangian analysis of continua-user manual, ver. 2.21, Itasca Consulting Group, Minneapolis.
  26. Jawed, M. and Sinha, R.K. (2018), "Design of rhombus coal pillars and support for roadway stability and mechanizing loading of face coal using SDLs in a steeply inclined thin coal seam-a technical feasibility study", Arab. J. Geosci., 11, 415. https://doi.org/10.1007/s12517-018-3747-4
  27. Jessu, K., Spearing, A. and Sharifzadeh, M. (2018), "Laboratory and numerical investigation on strength performance of inclined pillars", Energies, 11(11), 3229. https://doi.org/10.3390/en11113229.
  28. Kaiser, P.K., Kim, B., Bewick, R.P. and Valley, B. (2010), "Rock mass strength at depth and implications for pillar design", Proceedings of the 5th international seminar on deep and high stress mining. Santiago, Chile.
  29. Khawar, M. (2013), "Development of correlation between rock classification system and modulus of Deformation", University of Engineering and Technology, Lahore.
  30. Krauland, N. and Soder, P.E. (1987), "Determining pillar strength from pillar failure observation", Eng. Min. J., 8, 34-40.
  31. Kumar, H., Deb, D. and Chakravarty, D. (2017), "Numerical analysis of sill and crown pillar stability for multilevel cut and fill stopes in different geomining conditions", Geotech. Geol. Eng., 34, 529-549. https://doi.org/10.1007/s10706-015-9964-7.
  32. Lang, B.D.A. (1994), "Span Design for Entry-Type Excavations", Ph.D. Dissertation. University of British Columbia, Vancouver.
  33. Li, X., Li, D., Liu, Zh., Zhao, G. and Wang, W. (2013), "Determination of the minimum thickness of crown pillar for safe exploitation of a subsea gold mine based on numerical modeling", Int. J. Roc. Mech. Min. Sci., 57(3), 42-56. https://doi.org/10.1016/j.ijrmms.2012.08.005.
  34. Lunder, P. (1994), "Hard rock pillar strength estimation: an applied empirical approach", MSc Thesis. University of British Columbia, Vancouver.
  35. Lunder, P.J. and Pakalnis, R.C. (1997), "Determination of the strength of hard-rock mine pillars", Bull. Can. Inst. Min. Metall., 90, 51-55.
  36. Marinos, P. and Hoek, E. (2000), "GSI: a geologically friendly tool for rock mass strength estimation", Proceedings of the GeoEng2000 at the Int Conf on Geotechnical and Geological Engineering.
  37. Mark, C. and Bieniawski, Z.T. (1986), "An empirical method for the design of chain pillars in longwall mining", Proceedings of the 27th U.S. Symposium on Rock Mechanics, New York.
  38. Martin, C.D. and Maybee, W.G. (2000), "The strength of hard-rock pillars", Int. J. Roc. Mech. Min. Sci., 37, 1239-1246. https://doi.org/10.1016/S1365-1609(00)00032-0
  39. Mitri, H.S. (2007), "Assessment of horizontal pillar burst in deep hard rock mines", Int. J. Risk Ass. Manag., 7(5), 695-707. https://doi.org/10.1504/IJRAM.2007.014094.
  40. Mortazavi, A., Hassani, F.P. and Shabani, M. (2009), "A numerical investigation of rock pillar failure mechanism in underground openings", Comp. Geo., 36, 691-697. https://doi.org/10.1016/j.compgeo.2008.11.004.
  41. Naung, N., Sasaoka, T., Shimada, H. and Hamanaka, A. (2018), "Stability assessment of open stope under overlaying mined-out regions at Modi Taung gold mine, Myanmar", Int. J. Geosc., 9(9), 547-571. https://doi.org/10.4236/ijg.2018.99032.
  42. Nicholson, G.A. and Bieniawski, Z.T. (1990), "A nonlinear deformation modulus based on rock mass classification", Int. J. Min. Geol. Eng., 8, 181-202. https://doi.org/10.1007/BF01554041
  43. Oke, J. and Kalenchuk, K. (2017), "Selecting the most applicable hard rock pillar design method", Proceedings of the 51st US Rock Mechanics/Geomechanics Symposium, California, USA.
  44. Ouchi, A.M., Pakalnis, R. and Brady, T.M. (2004), "Update of span design curve for weak rock masses", Proceedings of the 99th Annual AGM-CIM Conference, Edmonton.
  45. Ozbay, M.U., Ryder, J.A. and Jager, A.J. (1995), "The design of pillar system as practiced in shallow hard-rock tabular mines in South Africa", J. S. Afr. Inst. Min. Metall., 95, 7-18.
  46. Palinkas, S.S., Palinkas, L.A., Renac, C.H., Spnagenberg, J.E., Lueders, V., Molnar, F. and Maliqi, G. (2013), "Metallogenic model of the Trepca Pb-Zn-Ag skarn deposit, Kosovo: evidence from fluid inclusions, rare earch elements, and stable isotope data", Economic Geology., 108(1), 153-162. https://doi.org/10.2113/econgeo.108.1.135.
  47. Pariseau, W.G., Duan, F. and Schmuck, S.H. (1984), "Numerical assessment of the influence of anisotropy on steeply dipping VCR stopes", SME-AMI, New York.
  48. Paveley, L.A. and Harding, R.B. (2011), "Pillar Optimization? Post-Pillar Cut and Fill Mining in a shallow dipping Ni Sulfide deposit in Northern Manitoba", Can. Inst. Min. Metall. Pet.
  49. Potvin, Y., Hudyma, M. and Miller, H.D.S. (1989), "Rib pillar design in open stope mining", Bull. Can. Inst. Min. Metall., 82(927), 31-36.
  50. Ramamurthy, T. (2004), "A geo-engineering classification for rocks and rock masses", Int. J. Roc. Mech. Min. Sci., 41, 89-101. https://doi.org/10.1016/S1365-1609(03)00078-9.
  51. Read, S.A.L., Richards, L.R. and Perrin, N.D. (1999), "Applicability of the Hoek-Brown failure criterion to New Zealand greywacke rocks", Proceedings of the 9th international symposium on rock mechanics, Paris.
  52. Ren, Q., Wang, F., Chen, B., Zhao, M., Peng, Z. and Yang, M. (2020), "Stability prediction of pillars based on Bieniawski pillar strength formula: a case of a phosphate mine", Geotech. Geol. Eng., 38, 4033-4044. https://doi.org/10.1007/s10706-020-01275-9.
  53. Sainoki, A. and Mitri, H.S. (2017), "Numerical investigation into pillar failure induced by time-dependent skin degradation", Int. J. Min. Sci. Technol., 27(4), 591-7. https://doi.org/10.1016/j.ijmst.2017.05.002.
  54. Salamon, M.D.G. and Munro, A.H. (1967), "A study of the strength of coal pillars", J. S. Afr. Inst. Min. Metall., 68, 55-67.
  55. Schubert, C.J. and Villaescusa, E. (2008), "An approach to hard rock pillar design at the McArthur River Mine", Proceedings of the AusIMM Annual Conference, Mount Isa.
  56. Serafim, J.L. and Pereira, J.P. (1983), "Considerations of geomechanics classification of Bieniawski", Proceedings of the International Symposium on engineering geology and underground construction, Rotterdam, Balkema.
  57. Sharipov, A.S. and Adoko, A.C. (2021), "An approach to estimate coal pillar strength", Proceedings of the IOP Conference Series: Earth and Environmental Science., 833(1), 012136. https://doi.org/10.1088/1755-1315/833/1/012136.
  58. Sherizadeh, T. and Kulatilake, P.H.S.W. (2016), "Assessment of roof stability in a room and pillar coal mine in the U.S. using three-dimensional distinct element method", Tunn. Undergr. Sp. Technol., 10, 24-37. https://doi.org/10.1016/j.tust.2016.06.005.
  59. Sjoberg, J. (1993), "Design methods for stope and sill pillars with application to the Zinkgruvan Mine", Roc. Mech. Roc. Eng., 26(3), 253-275. https://doi.org/10.1007/BF01040118
  60. Sonmez, H., Gokceoglu, C. and Ulusay, R. (2004), "Indirect determination of the modulus of deformation of rock masses based on the GSI system", Int. J. Roc. Mech. Min. Sci., 41(5), 849-857. https://doi.org/10.1016/j.ijrmms.2003.01.006.
  61. Thibodeau, D. and Yao, M. (2015), "Post-pillar design for overhand cut and fill mining in moderate to high stress conditions: A case study", Proceedings of the 13th ISRM International Congress of Rock Mechanics, Montreal.
  62. Unlu, T. (2000), "Critical dimension concept in pillar stability", Proceedings of the 17th International Mining Congress and Exhibition of Turkey: IMCET, Ankara, Turkey.
  63. Van der Merwe, J. and Mathey, M. (2013), "Update of coal pillar Database for South African coal mining", J. S. Afr. Ins. Min. Metal., 113, 825-40. https://doi.org/10.1088/1755-1315/833/1/012136.
  64. Vasarhelyi, B. and Kovacs, D. (2017), "Empirical methods of calculating the mechanical parameters of the rock mass", Periodica Polytechnica Civil Eng., 61(1), 38-50. https://doi.org/10.3311/PPci.10095.
  65. Von Kimmelmann, M.R., Hyde, B. and Madgwick, R.J. (1984), "The use of computer applications at BCL Limited in planning pillar extraction and the design of mining layouts", ISRM/BGS, Cambridge.
  66. Wagner, H. (2003), "The role of pillars in small underground mines", International Conference on Safety and Environment Aspects of Mining., 63, 89-104.
  67. Wang, J., Milne, D. and Pakalnis, R. (2002), "Application of a neural network in the empirical design of underground excavation spans", Min. Technol., 111(1), 73-81. https://doi.org/10.1179/mnt.2002.111.1.73.
  68. Wang, J., Pakalnis, R.., Milne, D. and Lang, B. (2000), "Empirical underground entry-type excavation span design modification", Proceedings of the 53rd Annual Conference of the Canadian Geotechnical Society, Montreal.
  69. Zeqiri, K. (2020), "Investigation of the mining accidents at Stan Terg mine", Min. Sci., 27, 39-46. https://doi.org/10.37190/msc202703.
  70. Zhang, J., Peng, H., Qiang, Z., Meng, L. and Zhi-wei, C. (2017), "Stability and control of room mining coal pillars-taking room mining coal pillars of solid backfill recovery as an example", J. Cen. S. Uni., 24(5), 1121-1132. https://doi.org/10.1007/s11771-017-3515-8
  71. Zhou, N., Yan, H., Jiang, Sh., Sun, Q. and Ouyand, S. (2019), "Stability analysis of surrounding rock in paste backfill recovery of residual room pillars", Susta. O. Ac, J., 11:1-13. https://doi.org/10.3390/su11020478.