DOI QR코드

DOI QR Code

3D Magic Wand: Interface for Mesh Segmentation Using Harmonic Field

3D Magic Wand: 하모닉 필드를 이용한 메쉬 분할 기법

  • 문지혜 (동국대학교 멀티미디어공학과) ;
  • 박상훈 (동국대학교 멀티미디어학과) ;
  • 윤승현 (동국대학교 멀티미디어공학과)
  • Received : 2021.12.21
  • Accepted : 2022.02.10
  • Published : 2022.03.01

Abstract

In this paper we present a new method for interactive segmentation of a triangle mesh by using the concavity-sensitive harmonic field and anisotropic geodesic. The proposed method only requires a single vertex in a desired feature region, while most of existing methods need explicit information on segmentation boundary. From the user-clicked vertex, a candidate region which contains the desired feature region is defined and concavity-senstive harmonic field is constructed on the region by using appropriate boundary constraints. An initial isoline is chosen from the uniformly sampled isolines on the harmonic field and optimal points on the initial isoline are determined as interpolation points. Final segmentation boundary is then constructed by computing anisotropic geodesics passing through the interpolation points. In experimental results, we demonstrate the effectiveness of the proposed method by selecting several features in various 3D models.

본 논문에서는 특징 추출 하모닉 필드(harmonic field)와 비등방 측지선(anisotropic geodesic)을 이용하여 메쉬의 특징 영역을 분할하는 새로운 기법을 제안한다. 기존 대부분의 메쉬 분할 기법들은 경계 영역에 대한 사용자의 명시적인 입력을 요구하지만, 제안된 기법에서는 사용자가 관심 영역의 임의의 정점을 선택하여 직관적이고 편리하게 특징 영역을 분할한다. 사용자가 선택한 정점을 중심으로 오목한(concave) 영역에서 큰 변화를 갖는 하모닉 필드를 생성한다. 생성된 하모닉 필드에서 하나의 등위선(isoline)을 선택하여 초기 분할 경계선을 정하고, 선택된 등위선에서 최적의 특징점을 추출하여 비등방 측지선으로 연결함으로써 최종적인 분할 경계선을 생성한다. 다양한 실험을 통해 제안된 기법이 사용자의 입력에 민감하지 않으며, 특징 영역 분할에 효과적으로 사용될 수 있음을 보인다.

Keywords

Acknowledgement

이 성과는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1F1A1048472, No. 2020X1A3A1093880, No. 2021R1A2C2012663).

References

  1. R. S. Rodrigues, J. F. Morgado, and A. J. Gomes, "Part-based mesh segmentation: a survey," Computer Graphics Forum, vol. 37, no. 6, pp. 235-274, 2018. https://doi.org/10.1111/cgf.13323
  2. D. D. Hoffman and M. Singh, "Salience of visual parts," Cognition, vol. 63, no. 1, pp. 29-78, 1997. https://doi.org/10.1016/S0010-0277(96)00791-3
  3. Y. Zheng and C.-L. Tai, "Mesh decomposition with cross-boundary brushes," Computer Graphics Forum, vol. 29, no. 2, pp. 527-535, 2010. https://doi.org/10.1111/j.1467-8659.2009.01622.x
  4. O. K.-C. Au, Y. Zheng, M. Chen, P. Xu, and C.-L. Tai, "Mesh segmentation with concavity-aware fields," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 7, pp. 1125-1134, 2011. https://doi.org/10.1109/TVCG.2011.131
  5. B. Chazelle, D. P. Dobkin, N. Shouraboura, and A. Tal, "Strategies for polyhedral surface decomposition: An experimental study," Computational Geometry, vol. 7, no. 5-6, pp. 327-342, 1997. https://doi.org/10.1016/S0925-7721(96)00024-7
  6. J. Serra, Image Analysis and Mathematical Morphology. Academic Press, Inc., 1983.
  7. A. P. Mangan and R. T. Whitaker, "Surface segmentation using morphological watersheds," in Proceedings of IEEE Visualization, 1998.
  8. A. P. Mangan and R. T. Whitaker, "Partitioning 3D surface meshes using watershed segmentation," IEEE Transactions on Visualization and Computer Graphics, vol. 5, no. 4, pp. 308-321, 1999. https://doi.org/10.1109/2945.817348
  9. S. Lloyd, "Least squares quantization in PCM," IEEE Transactions on Information Theory, vol. 28, no. 2, pp. 129-137, 1982. https://doi.org/10.1109/TIT.1982.1056489
  10. S. Katz and A. Tal, "Hierarchical mesh decomposition using fuzzy clustering and cuts," ACM Transactions on Graphics (TOG), vol. 22, no. 3, pp. 954-961, 2003. https://doi.org/10.1145/882262.882369
  11. Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.-P. Seidel, "Intelligent mesh scissoring using 3D snakes," in Proceeding of the 12th Pacific Conference on Computer Graphics and Applications, 2004, pp. 279-287.
  12. Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.-P. Seidel, "Mesh scissoring with minima rule and part salience," Computer Aided Geometric Design, vol. 22, no. 5, pp. 444-465, 2005. https://doi.org/10.1016/j.cagd.2005.04.002
  13. D. D. Hoffman and W. A. Richards, "Parts of recognition," Cognition, vol. 18, no. 1-3, pp. 65-96, 1984. https://doi.org/10.1016/0010-0277(84)90022-2
  14. Y. Zheng, C.-L. Tai, and O. K.-C. Au, "Dot scissor: a singleclick interface for mesh segmentation," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 8, pp. 1304-1312, 2011. https://doi.org/10.1109/TVCG.2011.140
  15. B.-j. Zou, S.-j. Liu, S.-h. Liao, X. Ding, and Y. Liang, "Interactive tooth partition of dental mesh base on tooth-target harmonic field," Computers in Biology and Medicine, vol. 56, pp. 132-144, 2015. https://doi.org/10.1016/j.compbiomed.2014.10.013
  16. S.-h. Liao, S.-j. Liu, B.-j. Zou, X. Ding, Y. Liang, and J.-h. Huang, "Automatic tooth segmentation of dental mesh based on harmonic fields," BioMed Research International, vol. 2015, 2015.
  17. M. Desbrun, M. Meyer, P. Schroder, and A. H. Barr, "Implicit fairing of irregular meshes using diffusion and curvature flow," in Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, 1999, pp. 317-324.
  18. Y. Zhuang, M. Zou, N. Carr, and T. Ju, "Anisotropic geodesics for live-wire mesh segmentation," Computer Graphics Forum, vol. 33, no. 7, pp. 111-120, 2014. https://doi.org/10.1111/cgf.12479
  19. J. S. Mitchell, D. M. Mount, and C. H. Papadimitriou, "The discrete geodesic problem," SIAM Journal on Computing, vol. 16, no. 4, pp. 647-668, 1987. https://doi.org/10.1137/0216045
  20. V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and H. Hoppe, "Fast exact and approximate geodesics on meshes," ACM Transactions on Graphics (TOG), vol. 24, no. 3, pp. 553-560, 2005. https://doi.org/10.1145/1073204.1073228
  21. J. Chen and Y. Han, "Shortest paths on a polyhedron," in Proceedings of the 6th Annual Symposium on Computational Geometry, 1990, pp. 360-369.
  22. S.-Q. Xin and G.-J. Wang, "Improving Chen and Han's algorithm on the discrete geodesic problem," ACM Transactions on Graphics (TOG), vol. 28, no. 4, pp. 1-8, 2009.
  23. M. Campen, M. Heistermann, and L. Kobbelt, "Practical anisotropic geodesy," Computer Graphics Forum, vol. 32, no. 5, pp. 63-71, 2013. https://doi.org/10.1111/cgf.12173
  24. V. Lucquin, S. Deguy, and T. Boubekeur, "Seamcut: interactive mesh segmentation for parameterization," in SIGGRAPH Asia 2017 Technical Briefs, 2017, pp. 1-4.
  25. S. Yang, R. Wang, W. Zhao, and Y. Ke, "3D intelligent scissors for dental mesh segmentation," Computational and Mathematical Methods in Medicine, vol. 2020, 2020.