참고문헌
- Abdelrahman, A.H.A., Liu, Y.P. and Chan, S.L. (2020), "Advanced joint slip model for single-angle bolted connections considering various effects", Adv. Struct. Eng., 23(10), 2121-2135. https://doi.org/10.1177/1369433220906226.
- Albermani, F., Mahendran, M. and Kitipornchai, S. (2004), "Upgrading of transmission towers using a diaphragm bracing system", Eng. Struct., 26(May), 735-744. https://doi.org/10.1016/j.engstruct.2004.01.004.
- Albermani, F., Kitipornchai, S. and Chan, R.W.K. (2009), "Failure analysis of transmission towers", Eng. Fail. Anal., 16(SEP), 1922-1928. https://doi.org/10.1016/j.engfailanal.2008.10.001.04.096.
- American Society of Civil Engineers (2010), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, Virginia. United States of America.
- Balagopal R., Ramaswamy A., Palani G.S. and Rao N.P. (2020), "Simplified bolted connection model for analysis of transmission line towers", Structures, 27(8), 2114-2125. https://doi.org/10.1016 /j.istruc.2020.08.029. https://doi.org/10.1016/j.istruc.2020.08.029
- Banik, S.S., Hong, H.P. and Kopp, G.A. (2010), "Assessment of capacity curves for transmission line towers under wind loading", Wind Struct., 13(1), 1-20. https://doi.org/10.12989/was.2010.13.1.001.
- Cai, Y.Z., Xie, Q. and Xue, S.T. (2019), "Fragility modelling framework for transmission line towers under winds", Eng. Struct., 191(JUL), 686-697. https://doi.org/10.1016/j.engstruct.2019. 04.096.
- Chen, S.F. (2011), "Stability capacity of tower cross-bracings taking account of interaction in buckling", China Civil Eng. J., 44 (1), 19-28. https://doi.org/10.15951/j.tmgcxb.2011.01.009.
- Darestani, Y.M., Shafieezadeh, A. and Cha, K. (2020), "Effect of modelling complexities on extreme wind hazard performance of steel lattice transmission towers", Struct. Infrastruct. Eng., 16(6), 898-915. https://doi.org/10.1080/15732479.2019.1673783.
- de Souza, R.R., Miguel, L.F.F., Kaminski, J. Lopez, R.H. and Torii, A.J. (2020), "Optimization of transmission towers considering the bolt slippage effect", Eng. Struct., 211(5), 1-13. https://doi.org/10.1016/j.engstruct.2020.110436.
- Earls, C.J. (2002), "On the notion of effective length for single angle geometric axis flexure", J. Construct. Steel Res., 58(9), 1195-1210. https://doi.org/10.1016/S0143-974X(01)00074-8.
- Edgar, T.H. and Sordo, E. (2017), "Structural behavior of lattice transmission towers subjected to wind load", Struct. Infrastruct. Eng., 13(11), 1462-1475. https://doi.org/10.1080/15732479.2017.1290120.
- Elawady, A., Aboshosha, H. and El Damatty, A. (2018), "Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data", Wind Struct., 27(2), 71-88. https://doi.org/10.12989/was.2018.27.2.071.
- Fu, X., Li, H.N., Li, G., Dong, Z.Q. and Zhao, M., Q. (2021), "Failure analysis of a transmission line considering the joint probability distribution of wind speed and rain intensity", Eng. Struct., 233(111913), 1-13. https://doi.org/10.1016/j.engstruct.2021.111913.
- Hamada, A. and El Damatty, A. (2016), "Behaviour of transmission line conductors under tornado wind", Wind Struct., 22(3), 369-391. https://doi.org/10.12989/was.2016.22.3.369.
- Hamada, A., King, J.P.C., El Damatty, A.A., Bitsuamlak, G. and Hamada, A. (2017), "The response of a guyed transmission line system to boundary layer wind", Eng. Struct., 139(1), 135-152. http://dx.doi.org/10.1016/j.engstruct.2017.01.047.
- Hamzah, N.H. and Usman, F. (2019), "Geospatial analysis of wind velocity to determine wind loading on transmission tower", Wind Struct., 28(6), 381-388. https://doi.org/10.12989/was.2019.28. 6.381.
- He, B., Zhao, M.X., Feng, W.T., Xiu, Y.P., Wang, Y., Feng, L.J., Qin, Y.J. and Wang, C.K. (2019), "A method for analyzing stability of tower-line system under strong winds", Adv. Eng. Softw., 127(JAN), 1-7. https://doi.org/10.1016/j.advengsoft.2018.10.004.
- Kim, W.B. (2020), "Strength and behavior according to leg frame shape variations of an electric transmission tower", Int. J. Steel Struct., 20(1), 355-363. https://doi.org/10.1007/s13296-019-00300-9.
- Li, J.X., McClure, G. and Wang, S.H. (2021), "Ensuring the structural safety of overhead transmission lines by design", J. Aeros. Eng., 34(3), 1-17. https://doi.org/10.1061/(ASCE) AS.1943-5525.0001245.
- Li, X., Zhang, W., Niu, H.W. and Wu, Z.Y. (2018), "Probabilistic capacity assessment of single circuit transmission tower-line system subjected to strong winds", Eng. Struct., 175(NOV), 517-530. https://doi.org/10.1016/ j.engstruct.2018.08.061.
- Ministry of Housing and Urban-Rural Development of the People's Republic of China (2017), National Standard of the People's Republic of China. GB50017-2017 Standard for Design of Steel Structures, China Architecture and Building Press, Beijing, China.
- Pourshargh F., Legeron F.P. and Langlois S. (2019), "Modeling the local buckling failure of angle sections with beam elements", Adv. Steel Constr., 15(4), 364-376, https://doi.org/10.18057/ IJASC.2019.15.4.7.
- Popovic, D., Hancock, G.J. and Rasmussen, K.J.R. (2013), "Compression tests on cold-formed angles loaded parallel with a leg", J. Struct. Eng., 127(6), 600-607. https://doi.org/10.1061/(ASCE) 0733-9445(2001)127:6(600).
- Xie, Q. and Sun, L. (2013), "Experimental study on the mechanical behavior and failure mechanism of a latticed steel transmission tower", J. Struct. Eng., 139(JUN), 1009-1018. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000722.
- Xie Q., Sun, Q.G., Guan, Z. and Zhou, Y. (2013), "Wind tunnel test on global drag coefficients of multi-bundled conductors", J. Wind Eng. Ind. Aerod., 120(1), 9-18. https://doi.org/10.1016/j.jweia.2013.06.005.
- Zhang, J. and Xie, Q. (2019), "Failure analysis of transmission tower subjected to strong wind load", J. Construct. Steel Res., 160(SEP), 271-279. https://doi.org/10.1016/j.jcsr.2019. 05.041.
- Zhang, Q. (2020), "Experimental study of wind loads on typical single-circuit transmission towers", Proc. Inst. Civ. Eng. Struct. Build., 173(3), 186-197, https://doi.org/10.1680/jstbu.17.00170.