DOI QR코드

DOI QR Code

Comparison of Two Methodsto Estimate Urban Sensible Heat Flux by Using Satellite Images

위성 영상을 활용한 두 가지 현열 플럭스 추정 방법 간의 비교

  • Kim, Sang-Hyuck (Dept. of LandscapeArchitecture and Rural System Engineering, Seoul National University) ;
  • Lee, Dong-Kun (Dept. of LandscapeArchitecture and Rural System Engineering, Seoul National University)
  • 김상혁 (서울대학교 생태조경지역시스템 공학부) ;
  • 이동근 (서울대학교 조경지역시스템 공학부)
  • Received : 2021.11.30
  • Accepted : 2022.02.13
  • Published : 2022.02.28

Abstract

In orderto understand the urban thermal conditions, many studies have been conducted to estimate the thermal fluxes. Currently sensible heat fluxes are estimated through various methods, but studies about comparing the differences between each method are very insufficient. Therefore, this study try to estimate the sensible heat flux of the same area by two representative estimation methods and compare their results to confirm the significance and limitation between methods. As a result of the study, the heat balance methods has a great advantage in terms of resolution but it can not consider the anthropogenic heat flux, so sensible heat flux can be underestimated in urban areas. When estimating based on physical equation, anthropogenic heat flux can be considered and the error is relatively small, it has a limitations in time and space resolutons. The two methods showed the largest difference in industiral areas where anthropogenic heat fluxes are high, with an average of 135 W/m2 and a maximum of 400 W/m2. On the other hand, the green and water have a very small difference with and average of 20 W/m2. The results between two methods show significant differences in urban areas, it is necessary to select a suitable method for each research purpose.

도시 지역의 열 환경을 파악하기 위해 열 플럭스를 추정하고자 하는 연구들이 많이 진행되어 왔다. 현재 다양한 방법을 통해 현열 플럭스가 추정되고 있으나 각 방법 간의 차이를 비교하는 연구는 매우 미흡한 실정이다. 따라서 본 연구는 대표적인 두 가지 현열 플럭스 추정 방법을 통해 동일한 대상지의 현열 플럭스를 추정하고 그 결과를 비교하여 방법 간의 의의와 한계를 확인하고자 하였다. 연구 결과 열수지 방정식 방법을 통해 현열 플럭스를 추정할 경우 해상도면에서 큰 장점을 가지나 도시 지역의 특징 중 하나인 인공열을 반영하지 못해 현열이 과소추정될 수 있음을 확인할 수 있었다. 물리식을 기반으로 추정할 경우 상대적으로 오차가 작고 인공열의 반영이 가능하나, 시간 및 공간 해상도에 있어 한계가 있음을 확인하였다. 두 방법은 인공열이 많이 발생하는 공업지역에서 가장 큰 차이를 나타냈으며 그 차이는 평균 약 135 W/m2, 최대 400 W/m2로 나타났다. 반면 녹지 및 수변공간은 약 20 W/m2로 두 방법 간의 차이가 매우 작은 것을 확인할 수 있었다. 두 방법 간의 결과가 도시 지역에서 유의미한 차이를 보이는 만큼 향후 연구 목적에 맞는 방법을 선택할 필요가 있다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 도시생태 건강성 증진 기술개발사업의 지원을 받아 연구되었습니다(2020002770003).

References

  1. Allen RG, Pereira LS, Raes D, Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300(9): D05109.
  2. Allen L, Lindberg F, Grimmond CSB. 2011. Global to city scale urban anthropogenic heat flux: model and variability. International Journal of Climatology 31(13): 1990-2005. https://doi.org/10.1002/joc.2210
  3. Bornstein RD. 1975. The two-dimensional URBMET urban boundary layer model. Journal of Applied Meteorology and Climatology 14(8): 1459-1477. https://doi.org/10.1175/1520-0450(1975)014<1459:TTDUUB>2.0.CO;2
  4. Bornstein R, Lin Q. 2000. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmospheric Environment 34(3): 507-516. https://doi.org/10.1016/S1352-2310(99)00374-X
  5. Brutsaert W. 1982. Evaporation into the atmosphere: Theory, history, and applications. D. Reidel Publ., Boston, MA. Evaporation into the atmosphere: Theory, history, and applications. D. Reidel Publ., Boston, MA.
  6. Bueno B, Pigeon G, Norford LK, Zibouche K, Marchadier C. 2012. Development and evaluation of a building energy model integrated in the TEB scheme. Geoscientific Model Development 5(2): 433-448. https://doi.org/10.5194/gmd-5-433-2012
  7. Chen F, Yang X, Wu J. 2016. Simulation of the urban climate in a Chinese megacity with spatially heterogeneous anthropogenic heat data. Journal of Geophysical Research: Atmospheres 121(10): 5193-5212. https://doi.org/10.1002/2015JD024642
  8. Conti S, Meli P, Minelli G, Solimini R, Toccaceli V, Vichi M, Perini L. 2005. Epidemiologic study of mortality during the Summer 2003 heat wave in Italy. Environmental Research 98(3): 390-399. https://doi.org/10.1016/j.envres.2004.10.009
  9. Cui W, Chui TFM. 2021. Measurements and simulations of energy fluxes over a highrise and compact urban area in Hong Kong. Science of The Total Environment 765: 142718. https://doi.org/10.1016/j.scitotenv.2020.142718
  10. Doan VQ, Kusaka H, Nguyen TM. 2019. Roles of past, present, and future land use and anthropogenic heat release changes on urban heat island effects in Hanoi, Vietnam: Numerical experiments with a regional climate model. Sustainable Cities and Society 47: 101479. https://doi.org/10.1016/j.scs.2019.101479
  11. Flanner MG. 2009. Integrating anthropogenic heat flux with global climate models. Geophysical Research Letters 36(2).
  12. Gabey AM, Grimmond CSB, Capel-Timms I. 2019. Anthropogenic heat flux: advisable spatial resolutions when input data are scarce. Theoretical and Applied Climatology 135(1): 791-807. https://doi.org/10.1007/s00704-018-2367-y
  13. Grimmond CSB, Cleugh HA, Oke TR. 1991a. An objective urban heat storage model and its comparison with other schemes. Atmospheric Environment. Part B. Urban Atmosphere 25(3): 311-326. https://doi.org/10.1016/0957-1272(91)90003-W
  14. Grimmond CSB, Oke TR. 1991b. An evapotranspiration interception model for urban areas. Water Resources Research 27(7): 1739-1755. https://doi.org/10.1029/91WR00557
  15. Grimmond CSB, Oke TR. 2002. Turbulent heat fluxes in urban areas: Observations and a localscale urban meteorological parameterization scheme (LUMPS). Journal of Applied Meteorology and Climatology 41(7): 792-810. https://doi.org/10.1175/1520-0450(2002)041<0792:THFIUA>2.0.CO;2
  16. Gutierrez E, Gonzalez JE, Martilli A, Bornstein R. 2015. On the anthropogenic heat fluxes using an air conditioning evaporative cooling parameterization for mesoscale urban canopy models. Journal of Solar Energy Engineering 137(5): 051005. https://doi.org/10.1115/1.4030854
  17. Hamilton IG, Davies M, Steadman P, Stone A, Ridley I, Evans S. 2009. The significance of the anthropogenic heat emissions of London's buildings: A comparison against captured shortwave solar radiation. Building and Environment 44(4): 807-817. https://doi.org/10.1016/j.buildenv.2008.05.024
  18. Holtslag AAM, Van Ulden AP. 1983. A simple scheme for daytime estimates of the surface fluxes from routine weather data. Journal of Applied Meteorology and Climatology 22(4): 517-529. https://doi.org/10.1175/1520-0450(1983)022<0517:ASSFDE>2.0.CO;2
  19. Iamarino M, Beevers S, Grimmond CSB. 2012. High & resolution (space, time) anthropogenic heat emissions: London 1970-2025. International Journal of Climatology 32(11): 1754-1767. https://doi.org/10.1002/joc.2390
  20. Kato S, Yamaguchi Y. 2005. Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sensing of Environment 99(1-2): 44-54. https://doi.org/10.1016/j.rse.2005.04.026
  21. Kato S, Yamaguchi Y. 2007. Estimation of storage heat flux in an urban area using ASTER data. Remote Sensing of Environment 110(1): 1-17. https://doi.org/10.1016/j.rse.2007.02.011
  22. Kikegawa Y, Genchi Y, Yoshikado H, Kondo H. 2003. Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings' energy-demands. Applied Energy 76(4): 449-466. https://doi.org/10.1016/S0306-2619(03)00009-6
  23. Kwon YJ, Lee DK. 2019. Thermal comfort and longwave radiation over time in urban residential complexes. Sustainability 11(8): 2251. https://doi.org/10.3390/su11082251
  24. Loridan T, Grimmond CSB, Offerle BD, Young DT, Smith TE, Jarvi L, Lindberg F. 2011. Local-scale urban meteorological parameterization scheme (LUMPS): longwave radiation parameterization and seasonalityrelated developments. Journal of Applied Meteorology and Climatology 50(1): 185-202. https://doi.org/10.1175/2010JAMC2474.1
  25. Macdonald RW, Griffiths RF, Hall DJ. 1998. An improved method for the estimation of surface roughness of obstacle arrays. Atmospheric Environment 32(11): 1857-1864. https://doi.org/10.1016/S1352-2310(97)00403-2
  26. Oke TR. 1973. City size and the urban heat island. Atmospheric Environment (1967) 7(8): 769-779. https://doi.org/10.1016/0004-6981(73)90140-6
  27. Oke TR. 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society 108(455): 1-24. https://doi.org/10.1002/qj.49710845502
  28. Oke TR, Spronken-Smith RA, Jauregui E, Grimmond CS. 1999. The energy balance of central Mexico City during the dry season. Atmospheric Environment 33(24-25): 3919-3930. https://doi.org/10.1016/S1352-2310(99)00134-X
  29. Park CY, Lee DK, Krayenhoff ES, Heo HK, Ahn S, Asawa T, Kim HG. 2018. A multilayer mean radiant temperature model for pedestrians in a street canyon with trees. Building and Environment 141: 298-309. https://doi.org/10.1016/j.buildenv.2018.05.058
  30. Radhi H, Fikry F, Sharples S. 2013. Impacts of urbanisation on the thermal behaviour of new built up environments: A scoping study of the urban heat island in Bahrain. Landscape and Urban Planning 113: 47-61. https://doi.org/10.1016/j.landurbplan.2013.01.013
  31. Sailor DJ, Lu L. 2004. A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmospheric environment 38(17): 2737-2748. https://doi.org/10.1016/j.atmosenv.2004.01.034
  32. Smith C, Lindley S, Levermore G. 2009. Estimating spatial and temporal patterns of urban anthropogenic heat fluxes for UK cities: the case of Manchester. Theoretical and Applied Climatology 98(1): 19-35. https://doi.org/10.1007/s00704-008-0086-5
  33. Spronken Smith RA. 2002. Comparison of summer and winter time suburban energy fluxes in Christchurch, New Zealand. International Journal of Climatology: A Journal of the Royal Meteorological Society 22(8): 979-992. https://doi.org/10.1002/joc.767
  34. Yuan C, Adelia AS, Mei S, He W, Li XX, Norford L. 2020. Mitigating intensity of urban heat island by better understanding on urban morphology and anthropogenic heat dispersion. Building and Environment 176: 106876. https://doi.org/10.1016/j.buildenv.2020.106876
  35. Yu C, Hu D, Wang S, Chen S, Wang Y. 2021. Estimation of anthropogenic heat flux and its coupling analysis with urban building characteristics-A case study of typical cities in the Yangtze River Delta, China. Science of The Total Environment 774: 145805. https://doi.org/10.1016/j.scitotenv.2021.145805
  36. Varquez ACG, Kiyomoto S, Kanda M. 2021. Global 1-km present and future hourly anthropogenic heat flux. Scientific Data 8(1): 1-14. https://doi.org/10.1038/s41597-020-00786-7
  37. Zhang X, Aono Y, Monji N. 1998. Spatial variability of urban surface heat fluxes estimated from Landsat TM data under summer and winter conditions. Journal of Agricultural Meteorology 54(1): 1-11. https://doi.org/10.2480/agrmet.54.1