Acknowledgement
본 결과물은 환경부의 재원으로 한국환경산업기술원의 도시생태 건강성 증진 기술개발사업의 지원을 받아 연구되었습니다(2020002770003).
References
- Allen RG, Pereira LS, Raes D, Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300(9): D05109.
- Allen L, Lindberg F, Grimmond CSB. 2011. Global to city scale urban anthropogenic heat flux: model and variability. International Journal of Climatology 31(13): 1990-2005. https://doi.org/10.1002/joc.2210
- Bornstein RD. 1975. The two-dimensional URBMET urban boundary layer model. Journal of Applied Meteorology and Climatology 14(8): 1459-1477. https://doi.org/10.1175/1520-0450(1975)014<1459:TTDUUB>2.0.CO;2
- Bornstein R, Lin Q. 2000. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmospheric Environment 34(3): 507-516. https://doi.org/10.1016/S1352-2310(99)00374-X
- Brutsaert W. 1982. Evaporation into the atmosphere: Theory, history, and applications. D. Reidel Publ., Boston, MA. Evaporation into the atmosphere: Theory, history, and applications. D. Reidel Publ., Boston, MA.
- Bueno B, Pigeon G, Norford LK, Zibouche K, Marchadier C. 2012. Development and evaluation of a building energy model integrated in the TEB scheme. Geoscientific Model Development 5(2): 433-448. https://doi.org/10.5194/gmd-5-433-2012
- Chen F, Yang X, Wu J. 2016. Simulation of the urban climate in a Chinese megacity with spatially heterogeneous anthropogenic heat data. Journal of Geophysical Research: Atmospheres 121(10): 5193-5212. https://doi.org/10.1002/2015JD024642
- Conti S, Meli P, Minelli G, Solimini R, Toccaceli V, Vichi M, Perini L. 2005. Epidemiologic study of mortality during the Summer 2003 heat wave in Italy. Environmental Research 98(3): 390-399. https://doi.org/10.1016/j.envres.2004.10.009
- Cui W, Chui TFM. 2021. Measurements and simulations of energy fluxes over a highrise and compact urban area in Hong Kong. Science of The Total Environment 765: 142718. https://doi.org/10.1016/j.scitotenv.2020.142718
- Doan VQ, Kusaka H, Nguyen TM. 2019. Roles of past, present, and future land use and anthropogenic heat release changes on urban heat island effects in Hanoi, Vietnam: Numerical experiments with a regional climate model. Sustainable Cities and Society 47: 101479. https://doi.org/10.1016/j.scs.2019.101479
- Flanner MG. 2009. Integrating anthropogenic heat flux with global climate models. Geophysical Research Letters 36(2).
- Gabey AM, Grimmond CSB, Capel-Timms I. 2019. Anthropogenic heat flux: advisable spatial resolutions when input data are scarce. Theoretical and Applied Climatology 135(1): 791-807. https://doi.org/10.1007/s00704-018-2367-y
- Grimmond CSB, Cleugh HA, Oke TR. 1991a. An objective urban heat storage model and its comparison with other schemes. Atmospheric Environment. Part B. Urban Atmosphere 25(3): 311-326. https://doi.org/10.1016/0957-1272(91)90003-W
- Grimmond CSB, Oke TR. 1991b. An evapotranspiration interception model for urban areas. Water Resources Research 27(7): 1739-1755. https://doi.org/10.1029/91WR00557
- Grimmond CSB, Oke TR. 2002. Turbulent heat fluxes in urban areas: Observations and a localscale urban meteorological parameterization scheme (LUMPS). Journal of Applied Meteorology and Climatology 41(7): 792-810. https://doi.org/10.1175/1520-0450(2002)041<0792:THFIUA>2.0.CO;2
- Gutierrez E, Gonzalez JE, Martilli A, Bornstein R. 2015. On the anthropogenic heat fluxes using an air conditioning evaporative cooling parameterization for mesoscale urban canopy models. Journal of Solar Energy Engineering 137(5): 051005. https://doi.org/10.1115/1.4030854
- Hamilton IG, Davies M, Steadman P, Stone A, Ridley I, Evans S. 2009. The significance of the anthropogenic heat emissions of London's buildings: A comparison against captured shortwave solar radiation. Building and Environment 44(4): 807-817. https://doi.org/10.1016/j.buildenv.2008.05.024
- Holtslag AAM, Van Ulden AP. 1983. A simple scheme for daytime estimates of the surface fluxes from routine weather data. Journal of Applied Meteorology and Climatology 22(4): 517-529. https://doi.org/10.1175/1520-0450(1983)022<0517:ASSFDE>2.0.CO;2
- Iamarino M, Beevers S, Grimmond CSB. 2012. High & resolution (space, time) anthropogenic heat emissions: London 1970-2025. International Journal of Climatology 32(11): 1754-1767. https://doi.org/10.1002/joc.2390
- Kato S, Yamaguchi Y. 2005. Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sensing of Environment 99(1-2): 44-54. https://doi.org/10.1016/j.rse.2005.04.026
- Kato S, Yamaguchi Y. 2007. Estimation of storage heat flux in an urban area using ASTER data. Remote Sensing of Environment 110(1): 1-17. https://doi.org/10.1016/j.rse.2007.02.011
- Kikegawa Y, Genchi Y, Yoshikado H, Kondo H. 2003. Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings' energy-demands. Applied Energy 76(4): 449-466. https://doi.org/10.1016/S0306-2619(03)00009-6
- Kwon YJ, Lee DK. 2019. Thermal comfort and longwave radiation over time in urban residential complexes. Sustainability 11(8): 2251. https://doi.org/10.3390/su11082251
- Loridan T, Grimmond CSB, Offerle BD, Young DT, Smith TE, Jarvi L, Lindberg F. 2011. Local-scale urban meteorological parameterization scheme (LUMPS): longwave radiation parameterization and seasonalityrelated developments. Journal of Applied Meteorology and Climatology 50(1): 185-202. https://doi.org/10.1175/2010JAMC2474.1
- Macdonald RW, Griffiths RF, Hall DJ. 1998. An improved method for the estimation of surface roughness of obstacle arrays. Atmospheric Environment 32(11): 1857-1864. https://doi.org/10.1016/S1352-2310(97)00403-2
- Oke TR. 1973. City size and the urban heat island. Atmospheric Environment (1967) 7(8): 769-779. https://doi.org/10.1016/0004-6981(73)90140-6
- Oke TR. 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society 108(455): 1-24. https://doi.org/10.1002/qj.49710845502
- Oke TR, Spronken-Smith RA, Jauregui E, Grimmond CS. 1999. The energy balance of central Mexico City during the dry season. Atmospheric Environment 33(24-25): 3919-3930. https://doi.org/10.1016/S1352-2310(99)00134-X
- Park CY, Lee DK, Krayenhoff ES, Heo HK, Ahn S, Asawa T, Kim HG. 2018. A multilayer mean radiant temperature model for pedestrians in a street canyon with trees. Building and Environment 141: 298-309. https://doi.org/10.1016/j.buildenv.2018.05.058
- Radhi H, Fikry F, Sharples S. 2013. Impacts of urbanisation on the thermal behaviour of new built up environments: A scoping study of the urban heat island in Bahrain. Landscape and Urban Planning 113: 47-61. https://doi.org/10.1016/j.landurbplan.2013.01.013
- Sailor DJ, Lu L. 2004. A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmospheric environment 38(17): 2737-2748. https://doi.org/10.1016/j.atmosenv.2004.01.034
- Smith C, Lindley S, Levermore G. 2009. Estimating spatial and temporal patterns of urban anthropogenic heat fluxes for UK cities: the case of Manchester. Theoretical and Applied Climatology 98(1): 19-35. https://doi.org/10.1007/s00704-008-0086-5
- Spronken Smith RA. 2002. Comparison of summer and winter time suburban energy fluxes in Christchurch, New Zealand. International Journal of Climatology: A Journal of the Royal Meteorological Society 22(8): 979-992. https://doi.org/10.1002/joc.767
- Yuan C, Adelia AS, Mei S, He W, Li XX, Norford L. 2020. Mitigating intensity of urban heat island by better understanding on urban morphology and anthropogenic heat dispersion. Building and Environment 176: 106876. https://doi.org/10.1016/j.buildenv.2020.106876
- Yu C, Hu D, Wang S, Chen S, Wang Y. 2021. Estimation of anthropogenic heat flux and its coupling analysis with urban building characteristics-A case study of typical cities in the Yangtze River Delta, China. Science of The Total Environment 774: 145805. https://doi.org/10.1016/j.scitotenv.2021.145805
- Varquez ACG, Kiyomoto S, Kanda M. 2021. Global 1-km present and future hourly anthropogenic heat flux. Scientific Data 8(1): 1-14. https://doi.org/10.1038/s41597-020-00786-7
- Zhang X, Aono Y, Monji N. 1998. Spatial variability of urban surface heat fluxes estimated from Landsat TM data under summer and winter conditions. Journal of Agricultural Meteorology 54(1): 1-11. https://doi.org/10.2480/agrmet.54.1