DOI QR코드

DOI QR Code

Effects of Temperature on the Development and Reproduction of Ostrinia scapulalis (Lepidoptera: Crambidae)

콩줄기명나방(Ostrinia scapulalis) (나비목: 포충나방과)의 발육과 산란에 미치는 온도의 영향

  • Jeong Joon, Ahn (Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science) ;
  • Eun Young, Kim (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Bo Yoon, Seo (Crop Foundation Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jin Kyo, Jung (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration)
  • 안정준 (국립원예특작과학원 온난화대응농업연구소) ;
  • 김은영 (국립식량과학원 재배환경과) ;
  • 서보윤 (국립식량과학원 기초기반과) ;
  • 정진교 (국립식량과학원 재배환경과)
  • Received : 2022.09.14
  • Accepted : 2022.10.18
  • Published : 2022.12.01

Abstract

Ostrinia scapulalis is one of important pests in leguminous crops, especially red bean. In order to understand the biological characteristics of the insect, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of O. scapulalis at eleven constant temperatures of 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, and 36℃. Eggs and larvae successfully developed next life stage at most temperature subjected except 7, 10 and 13℃. The developmental period of egg, larva and pupa decreased as temperature increased. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of O. scapulalis were estimated by linear regression as 13.5℃ and 384.5DD, respectively. TL and TH from egg hatching to adult emergence using SSI model were 19.4℃ and 39.8℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of O. scapulalis was 20.4℃. Adults produced viable eggs at the temperature range between 16℃ and 34℃, and showed a maximum number, ca. 416 offsprings, at 25℃. Adult models including aging rate, age-specific survival rate, age-specific cumulative oviposition, and temperature-dependent fecundity were constructed, using the temperature-dependent adult traits. Temperature-dependent development models and adult oviposition models will be useful components to understand the population dynamics of O. scapulalis and will be expected using a basic data for establishing the strategy of integrated pest management in leguminous crops.

콩줄기명나방은 콩과작물 특히 팥을 가해하는 해충으로 알려져 있다. 본 연구는 온도가 콩줄기명나방의 발육단계별 발육기간, 성충의 수명과 산란특성에 미치는 영향을 파악하고자 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 36℃ 항온조건에서 조사하였다. 알과 유충은 7, 10, 13℃를 제외한 항온조건에서 다음 생애단계로 성공적으로 발육하였다. 알, 유충, 번데기의 발육기간은 온도가 상승할수록 짧아지는 경향을 보였다. 콩줄기명나방 발육단계별 발육 최저, 최고 한계는 LRF와 SSI모델을 이용하여 계산하였고 발육영점온도와 유효적산온일도는 선형회귀분석을 이용하였다. 1령 유충 부화부터 성충출현까지의 발육영점온도와 유효적산온일도는 13.5℃와 384.5DD로 추정되었다. SSI모델을 이용한 부화부터 성충출현까지 발육 최저 및 최고온도는 19.4℃과 39.8℃였고 이들간의 차이 즉 발육적정온도범위는 20.4℃였다. 성충은 16℃와 34℃ 범위에서 부화하는 알을 생산하였고, 25℃에서 최대 약 416마리의 자손을 낳았다. 노화율, 나이별 생존율, 나이별 누적산란율, 온도의존 산란수에 관련된 성충모델들이 작성되었다. 본 연구에서 제시한 온도발육모형과 산란모형은 야외에서 콩줄기명나방의 개체군동태를 이해하고 콩과작물의 종합적인 해충군관리체계를 마련하는데 기초기반자료로 활용될 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 어젠다 연구과제(PJ01527801)를 수행하는 과정에서 얻은 결과를 바탕으로 작성되었다.

References

  1. Ahn, J.J., Choi, K.S., Koh, S., 2019a. Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae). Appl. Entomol. Zool. 54, 63-74. https://doi.org/10.1007/s13355-018-0593-5
  2. Ahn, J.J., Choi, K.S., Koh, S., 2019b. Using viable eggs to determine oviposition models and life table analysis of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae). Korean J. Appl. Entomol. 58, 111-120.
  3. Ahn, J.J., Kim, E.Y., Seo, B.Y., Jung, J.K., 2022a. Effects of temperature on the development and reproduction of Matsumuraeses phaseoli (Lepidoptera: Tortricidae). Korean J. Appl. Entomol. 61, 461-473.
  4. Ahn, J.J., Kim, E.Y., Seo, B.Y., Jung, J.K., Lee, S.-W., 2022b. Effects of temperature on the development and fecundity of Maruca vitrata (Lepidoptera: Crambidae). Korean J. Appl. Entomol. 61, 563-575.
  5. Bae, Y.S., 2001. Family Pyraloidea: Pyraustinae & Pyraliae. Economic Insects of Korea 9. Ins. Koreana Suppl. 16, Junghaeng-Sa, Seoul, p. 252.
  6. Briere, J.F., Pracros, P., Le Roux, A.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29. https://doi.org/10.1093/ee/28.1.22
  7. CABI website, N.D. https://www.cabi.org (accessed on 12 September, 2022).
  8. Calcagno, V., Bonhomme, V., Thomas, Y., Singer, M.C., Bourguet, D., 2010. Divergence in behaviour between the European corn borer, Ostrinia nubilalis, and its sibling species Ostrinia scapulalis: adaptation to human harvesting?. Proc. R. Soc. B 277, 2703-2709. https://doi.org/10.1098/rspb.2010.0433
  9. Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Mackauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438. https://doi.org/10.2307/2402197
  10. Hattori, I., Mutuura, A., 1987. Identification of Japanese species belonging to the genus Ostrinia with the host relationship. Plant Prot. 41, 24-31. (Japanese journal)
  11. Heo, H.J., Son, Y.R., Seo, B.Y., Jung, J.K., Kim, Y., 2009. A molecular marker discriminating the soybean podworm, Matsumuraeses phaseoli and the podborer, M. falcana (Lepidoptera: Tortricidae). Korean J. Appl. Entomol. 48, 547-551. https://doi.org/10.5656/KSAE.2009.48.4.547
  12. Hoffmann, K.H., 1985. Metabolic and enzyme adaptation to temperature, in: Hoffmann, K.H. (Ed.), Environmental physiology and biochemistry of insects. Springer, Berlin, Heidelberg. pp. 1-32.
  13. Huang, Y., Takanashi, T., Hoshizaki, S., Tatsuki, S., Ishikawa, Y., 2002. Female sex pheromone polymorphism in adzuki bean borer, Ostrinia scapulalis, is similar to that in European corn borer, O. nubilalis. J. Chem. Ecol. 28, 533-539. https://doi.org/10.1023/A:1014540011854
  14. Huang, Y., Tatsuki, S., Kim, C.-G., Hoshizaki, S., Yoshiyasu, Y., Honda H., Ishikawa, Y., 1997. Identification of sex pheromone of adzuki bean borer, Ostrinia scapulalis. J. Chem. Ecol. 23, 2791-2802. https://doi.org/10.1023/A:1022567111508
  15. Hyun, J.-S., 2005. Integrated pest control - principles and practices -. Korean J. Appl. Entomol. 44, 73-90.
  16. Ikemoto, T., 2005. Intrinsic optimum temperature for development of insects and mites. Environ. Entomol. 34, 1377-1387. https://doi.org/10.1603/0046-225X-34.6.1377
  17. Ishikawa, Y., Takanashi, T. Kim, C., Hoshizaki, S., Tatsuki, S., Huang, Y., 1999. Ostrinia spp. in Japan: their host plants and sex pheromones. Entomol. Exp. Appl. 91, 237-244. https://doi.org/10.1046/j.1570-7458.1999.00489.x
  18. Jandel Scientific, 1994. TableCurve user's manual. San Rafael, CA. 
  19. Jung, J.K., Seo, B.Y., Cho, J-.R., Kwon, Y-.H., Kim, G-.H., 2009. Occurrence of lepidopteran insect pests and injury aspects in adzuki bean fields. Korean J. Appl. Entomol. 48, 29-35. https://doi.org/10.5656/KSAE.2009.48.1.029
  20. Jung, J.K., Seo, B.Y., Park, D.-S., Oh, H.-W., Lee, G.-S., Park, H.-C., Cho, J.R., 2012. Species identification and developmental biology of a red bean pest in Ostrinia sp. (Lepidoptera: Crambidae). Korean J. Appl. Entomol. 51, 469-477. https://doi.org/10.5656/KSAE.2012.11.0.066
  21. Jung, J.K., Seo, B.Y., Kim, Y., Lee, S.-W., 2016. Can Maruca vitrata (Lepidoptera: Crambidae) over-winter in Suwon Area? Korean J. Appl. Entomol. 55, 439-444. https://doi.org/10.5656/KSAE.2016.11.0.060
  22. Jung, J.K., Seo, B.Y., Jeong, I.-H., Kim, E.Y., Lee, S.W., 2021a. Application timings of insecticides to control the first generation of the Asian corn borer, Ostrinia furnacalis in waxy maize fields. Korean J. Appl. Entomol. 60, 431-448. https://doi.org/10.5656/KSAE.2021.11.0.041
  23. Jung, J.K., Seo, B.Y., Kim, E.Y., 2021b. Effects of temperature on survival, development, and reproduction of the non-diapause Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae). Korean J. Appl. Entomol. 60, 449-462. https://doi.org/10.5656/KSAE.2021.11.0.048
  24. Kim, D-S., Lee, J-H., 2003. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecol. Model. 162, 145-153. https://doi.org/10.1016/S0304-3800(02)00402-7
  25. Kim, D-S., Ahn, J.J., Lee, J-H., 2017. A review for non-linear models describing temperature-dependent development of insect populations: characteristics and developmental process of models. Korean J. Appl. Entomol. 56, 1-18. https://doi.org/10.5656/KSAE.2016.11.0.061
  26. Kim, E.Y., Kim, I.H., Seo, B.Y., Kim, Y., Park, C.-G., Jung, J.K., 2020. Diapause and voltinism in Ostrinia furnacalis (Lepidoptera: Crambidae) in Suwon, and larval instar sensitivity to diapause induction. Korean J. Appl. Entomol. 59, 185-202. https://doi.org/10.5656/KSAE.2020.06.0.026
  27. Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
  28. Logan, J.A., Wollkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140. https://doi.org/10.1093/ee/5.6.1133
  29. Mutuura, A., Munroe, E., 1970. Taxonomy and distribution of the European corn borer and allied species: genus Ostrinia (Lepidoptera: Pyralidae). Mem. Entomol. Soc. Can. 102, 1-112. https://doi.org/10.4039/entm10271fv
  30. Park, K.T., 1975. Taxonomic study of the corn stem boror in Korea with allied species of the genus Ostrinia (Lep.; Pyralidae). Kor. J. Pl. Prot. 14, 221-225.
  31. Park, C.-G., Seo, B.Y., Jung, J.K., Kim, H.-Y., Lee, S.-W., Seong, K.Y., 2017. Forecasting spring emergence of the Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae), based on post-diapause development rate. J. Econ. Entomol. 110, 2443-2451. https://doi.org/10.1093/jee/tox272
  32. Pinder III, J.E., Wiener, J.G., Smith, M.H., 1978. The Weibull distribution: a new method of summarizing survivorship data. Ecology 59, 175-179. https://doi.org/10.2307/1936645
  33. R statistics, 2015. R: A language and environment for statistical computing. R foundation for statistical computing. http://www.r-project.org (accessed on 20 January, 2022).
  34. Ratkowsky, D.A., Reddy, G.V.P., 2017. Empirical model with excellent statistical properties for describing temperature-dependent developmental rates of insects and mites. Ann. Entomol. Soc. Am. 110, 302-309. https://doi.org/10.1093/aesa/saw098
  35. Ratte, H.T., 1985. Temperature and insect development, in: Hoffmann, K.H. (Ed.), Environmental physiology and biochemistry of insects. Springer, Berlin, Heidelberg, pp. 33-66.
  36. SAS Institute, 2004. SAS System for Window, Release 8.02. SAS Institute, Cary, NC.
  37. Schoolfield, R.M., Sharpe, P.J.H., Mugnuson, C.E., 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88, 719-731. https://doi.org/10.1016/0022-5193(81)90246-0
  38. Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64, 649-670. https://doi.org/10.1016/0022-5193(77)90265-X
  39. Shi, P., Ge, F., Men, X., 2010. How to compare the lower developmental thresholds. Environ. Entomol. 39, 2033-2038. https://doi.org/10.1603/EN10136
  40. Shi, P-J., Reddy, G.V.P., Chen, L., Ge, F., 2017. Comparison of thermal performance equations in describing temperature-dependent developmental rates of insects: (II) two thermodynamic models. Ann. Entomol. Soc. Am. 110, 113-120. https://doi.org/10.1093/aesa/saw067
  41. Wagner, T.L., Wu, H.-I., Sharpe, P.J.H., Schoolfield, R.M., Coulson, R.N., 1984. Modeling insect development rates: a literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77, 208-220. https://doi.org/10.1093/aesa/77.2.208
  42. Weibull, W., 1951. A statistical distribution functions with wide applicability. J. Appl. Mech. 18, 293-297. https://doi.org/10.1115/1.4010337