DOI QR코드

DOI QR Code

Integral Pest Management of the Western Flower Thrips, Frankliniella occidentalis: Optimal Time to Introduce a Natural Predator after Chemical Insecticide Treatment

꽃노랑총채벌레 종합방제 - 화학농약 처리 후 안정적 천적 투입 시기

  • Chulyoung, Kim (Department of Plant Medicals, Andong National University) ;
  • Donghyun, Lee (Department of Plant Medicals, Andong National University) ;
  • Donghee, Lee (Industry Academy Cooperation Foundation, Andong National University) ;
  • Eunhye, Ham (Institute for Bioresources, Osangkinsect Co., Ltd.) ;
  • Yonggyun, Kim (Department of Plant Medicals, Andong National University)
  • Received : 2022.06.25
  • Accepted : 2022.09.07
  • Published : 2022.12.01

Abstract

The western flower thrips, Frankliniella occidentalis, infests the hot pepper cultivated in greenhouses and has been considered to be controlled by a natural enemy, Orius laevigatus. However, sporadic outbreaks of the thrips due to fast population growth occasionally need chemical insecticide treatments. This study was designed to develop an optimal integrated pest management (IPM) by using selective insecticides along with a safe re-introduction technique of the natural enemy after the chemical insecticide treatment. First, chemical insecticides were screened to select the high toxic commercial products against F. occidentalis. Five insecticides containing active components (pyriproxyfen+spinetoram, abamectin, spinosad, acetamiprid, and chlorpyrifos) were selected among 17 commercial products. These five selected insecticides gave different toxic properties to the natural enemy, O. laevigatus. Especially, abamectin and spinetoram gave relatively low toxicity to the natural enemy compared to organophosphate or neonicotinoid. Furthermore, the five selected insecticides were assessed in their residual toxicities against O. laevigatus. Organophosphate and neonicotinoid insecticides showed relatively longer residual toxicity compared to abamectin and spinosads. Indeed, abamectin or spinetoram did not give any significant toxicity to O. laevigatus after 3 days post-treatment. These residual effects were further supported by the assessment of the chemical residue analysis of the insecticides using LC-MS/MS. These results suggest an IPM technology: (1) chemical treatment of abamectin or spinetoram against sporadic outbreaks of F. occidentalis infesting hot pepper and (2) re-introduction of O. laevigatus to the crops after 3 days post-treatment to depress the equilibrium density below an economic injury level.

시설재배지 고추를 가해하는 꽃노랑총채벌레(Frankliniella occidentalis)를 대상으로 미끌애꽃노린재(Orius laevigatus)를 이용한 생물적 방제가 검토되고 있다. 그러나 대상 해충의 빠른 집단 성장은 화학 살충제의 투입이 때에 따라 요구된다. 본 연구는 화학 살충제와 천적의 이상적 종합 방제를 구현하기 위한 목적으로 선택성이 높은 살충제 선발 및 이들 살충제 처리 이후 미끌애꽃노린재의 안전한 재투입 시기를 결정하기 위해 수행되었다. 첫째로 꽃노랑총채벌레에 방제 효과가 높은 상용 살충제가 선발되었다. 총 17종류의 상용 살충제 가운데 5종류(pyriproxyfen+spinetoram, abamectin, spinosad, acetamiprid, chlorpyrifos) 주성분을 갖는 상용 살충제가 꽃노랑총채벌레에 우수한 방제효과를 주는 약제로 선발되었다. 이들 5종류의 살충제에 대해서 미끌애꽃노린재의 감수성 반응은 꽃노랑총채벌레와 상이하였다. 특별히 아바멕틴과 스피네토람이 유기인계 또는 네오니코티노이드에 비해 상대적으로 낮은 독성을 보였다. 이들 5종류의 살충제 처리 이후 잔류 독성을 미끌애꽃노린재를 이용하여 생물검정한 결과 유기인계 및 네오니코티노이드 약제는 비교적 오랜 기간 독성을 유지하지만, 아바멕틴과 스피네토람 약제의 경우 3일 이후에는 대상 천적에 피해를 주지 않는 것으로 나타났다. 이러한 잔류독성결과는 LC-MS/MS를 이용한 농약 잔류량 화학분석을 통해 뒷받침되었다. 이상의 결과는 높은 밀도로 증가한 꽃노랑총채벌레에 대해서 이 해충에 살충성이 높은 아바멕틴 또는 스피네토람의 약제를 살포하고 이후 3일 지나 미끌애꽃노린재의 투입을 통해 대상 해충의 평균 밀도를 경제적피해수준 이하로 유지할 수 있다는 종합방제 기술을 제시하고 있다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 공동연구사업(과제번호: PJ01578901)과 안동대학교 기본연구지원사업에 의해 이루어졌다.

References

  1. Angeli, G., Baldessari, M., Maines, R., Duso, C., 2005. Side-effects of pesticides on the predatory bug Orius laevigatus (Heteroptera: Anthocoridae) in the laboratory. Biocon. Sci. Technol. 15, 745-754. https://doi.org/10.1080/09583150500136345
  2. Ballal, C.R., Yamada, K., 2016. Anthocorid predators. in: Omkar, A. (Ed.), Ecofriendly pest management for food security. Elsevier, New York, pp. 183-216.
  3. Bielza, P., Quinto, V., Contreras, J., Torne, M., Martin, A., Espinosa, P.J., 2007. Resistance to spinosad in the western flower thrips, Frankliniella occidentalis (Pergande), in greenhouses of south-eastern Spain. Pest Manag. Sci. 63, 682-687. https://doi.org/10.1002/ps.1388
  4. Cho, S.W., Kyung, Y., Cho, S.R., Shin, S., Jeong, D.H., Kim, S.I., Park, G.H., Lee, S.J., Lee, Y.S., Kim, M.K., Jo, I.J., Koo, H.N., Kim, H.K., Kim, G.H., 2018. Evaluation of susceptibility of western flower thrips (Frankliniella occidentalis) and garden thrips (F. intonsa) to 51 insecticides. Korean J. Appl. Entomol. 57, 221-231. https://doi.org/10.5656/KSAE.2018.08.0.034
  5. Colomer, I., Aguado, P., Medina, P., Heredia, R.M., Fereres, A., Belda, J.E., Vinuela, E., 2011. Field trial measuring the compatibility of methoxyfenozide and flonicamid with Orius laevigatus Fieber (Hemiptera: Anthocoridae) and Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) in a commercial pepper green house. Pest Manag. Sci. 67, 1237-1244. https://doi.org/10.1002/ps.2173
  6. Dader, B., Colomer, I., Adan, A., Medina, P., Vinuela, E., 2020. Compatibility of early natural enemy introductions in commercial pepper and tomato greenhouses with repeated pesticide applications. Insect Sci. 27, 1111-1124. https://doi.org/10.1111/1744-7917.12723
  7. Demirozer, O., Tyler-Julian, K., Funderburk, J., Leppla, N., Reitz, S., 2012. Frankliniella occidentalis (Pergande) integrated pest management programs for fruiting vegetables in Florida. Pest Manag. Sci. 68, 1537-1545. https://doi.org/10.1002/ps.3389
  8. Espinosa, P.J., Contreras, J., Quinto, V., Gravalos, C., Fernandez, E., Bielza, P., 2005. Metabolic mechanisms of insecticide resistance in the western flower thrips, Frankliniella occidentalis (Pergande). Pest Manag. Sci. 61, 1009-1015. https://doi.org/10.1002/ps.1069
  9. Ham, E.H., Jun, H.J., Lee, J.S., Lim, U.T., Lee, Y.S., Park, J.K., 2019. Biological control of Tetranychus urticae Koch on strawberry using "Natural Enemy in First (NEF)" method. Korean J. Appl. Entomol. 58, 319-320.
  10. Isayama, S., Saito, S., Kuroda, K., Umeda, K., Kasamatsu, K., 2005. Pyridalyl, a novel insecticide: potency and insecticidal selectivity. Arch. Insect Biochem. Physiol. 58, 226-233. https://doi.org/10.1002/arch.20045
  11. Jung, D.O., Hwang, H.S., Kim, S.Y., Lee, K.Y., 2019. Biological control of thrips using a self-produced predatory mite, Stratiolaelaps scimitus (Acari: Laelapidae) in the greenhouse chrysanthemum. Korean J. Appl. Entomol. 58, 233-238.
  12. Kim, C., Choi, D., Lee, D., Khan, F., Kwon, G., Ham, E., Park, J., Kil, E.J., Kim, Y., 2022. Yearly occurrence of thrips infesting hot pepper in greenhouses and differential damages of dominant thrips. Korean J. Appl. Entomol. 61, 319-330.
  13. Kirk, W.D., Terry, L.I., 2003. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agric. For. Entomol. 5, 301-310. https://doi.org/10.1046/j.1461-9563.2003.00192.x
  14. KOSIS (Korean Statistical Information Service), 2021. Area of cultivation of outdoor vegetables. http://kostat.go.kr/portal/korea/kor_nw/1/1/index.board?bmode=read&aSeq=415188&pageNo=1&rowNum=10&amSeq=&sTarget=title&sTxt=NOWCAST (Accessed at June 24, 2022).
  15. Lacasa, A., Llorens, J.M., 1996. Trips y su control biologico (I). Ed. Pisa Ediciones. Alicante.
  16. Lahiri, S., Smith, H.A., Gireesh, M., Kaur, G., Montemayor, J.D., 2022. Arthropod pest management in strawberry. Insects 13, 475.  https://doi.org/10.3390/insects13050475
  17. Pappu, H.R., Jones, R.A.C, Jain, R.K., 2009. Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res. 141, 219-236. https://doi.org/10.1016/j.virusres.2009.01.009
  18. Pimprale, S.S., Besco, C.L., Bryson, E.K., Brown, T.M., 1997. Increased susceptibility of pyrethroid-resistant tobacco budworm (Lepidoptera: Noctuidae) to chlorfenapyr. J. Econ. Entomol. 90, 49-54. https://doi.org/10.1093/jee/90.1.49
  19. Puinean, A.M., Lansdell, S.J., Collins, T., Bielza, P., Millar, N.S., 2013. A nicotinic acetylcholine receptor transmembrane point mutation (G275E) associated with resistance to spinosad in Frankliniella occidentalis. J. Neurochem. 124, 590-601. https://doi.org/10.1111/jnc.12029
  20. Reitz, S.R., Gao. Y., Kirk, W.D.J., Hoddle, M.S., Leiss, K.A., Funderburk, J.E., 2020. Invasion biology, ecology, and management of western flower thrips. Annu. Rev. Entomol. 65, 17-37. https://doi.org/10.1146/annurev-ento-011019-024947
  21. SAS Institute, 1989. SAS/STAT User's Guide. SAS Institute, Inc., Cary, North Carolina.
  22. Siqueira, H.A.A., Guedes, R.N.C., Fragoso, D.B., Magalhaes, L.C., 2001. Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Int. J. Pest Manage., 247, 247-251.
  23. Sparks, T.C., Nauen, R., 2014. IRAC: mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 121, 122-128. https://doi.org/10.1016/j.pestbp.2014.11.014
  24. Tomlin, C.D.S., 2000. A World Compendium. The Pesticide Manual. 12th Ed. British Crop Protection Council, London, UK.
  25. Webster, C.G., Reitz, S.R., Perry, K.L., Adkins, S.A., 2011. Natural mRANA reassortant arising from two species of plant- and insect-infecting bunyaviruses and comparison of its sequence and biological properties to parental species. Virology 413, 216-225. https://doi.org/10.1016/j.virol.2011.02.011
  26. Zhao, M., Ho, H., Wu, Y., He, Y., Li, M., 2014. Western flower thrips (Frankliniella occidentalis) transmits Maize chlorotic mottle virus. J. Phytopathol. 162, 532-536. https://doi.org/10.1111/jph.12217
  27. Zhang, B., Qian, W., Qiao, X., Xi, Y., Wan, F., 2019. Invasion biology, ecology, and management of Frankliniella occidentalis in China. Arch. Insect Biochem. Physiol. 102, e21613.