과제정보
This research was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korean Government (MSIT; Nos. NRF-2019R1A2C1005719 and 2022R1A5A8033794).
참고문헌
- Abdulhussein, A.A. and Wallace, H.M. (2014). Polyamines and membrane transporters. Amino Acids 46, 655-660. https://doi.org/10.1007/s00726-013-1553-6
- Ali, A.T., Hochfeld, W.E., Myburgh, R., and Pepper, M.S. (2013). Adipocyte and adipogenesis. Eur. J. Cell Biol. 92, 229-236. https://doi.org/10.1016/j.ejcb.2013.06.001
- Bonhoure, N., Byrnes, A., Moir, R.D., Hodroj, W., Preitner, F., Praz, V., Marcelin, G., Chua, S.C., Jr., Martinez-Lopez, N., Singh, R., et al. (2015). Loss of the RNA polymerase III repressor MAF1 confers obesity resistance. Genes Dev. 29, 934-947. https://doi.org/10.1101/gad.258350.115
- Brenner, S., Bercovich, Z., Feiler, Y., Keshet, R., and Kahana, C. (2015). Dual regulatory role of polyamines in adipogenesis. J. Biol. Chem. 290, 27384-27392. https://doi.org/10.1074/jbc.M115.686980
- Bridges, R.J., Natale, N.R., and Patel, S.A. (2012). System xc-cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br. J. Pharmacol. 165, 20-34. https://doi.org/10.1111/j.1476-5381.2011.01480.x
- Cani, P.D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A.M., Delzenne, N.M., and Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470-1481. https://doi.org/10.2337/db07-1403
- Casero, R.A. and Pegg, A.E. (2009). Polyamine catabolism and disease. Biochem. J. 421, 323-338. https://doi.org/10.1042/BJ20090598
- Casero, R.A., Jr., Murray Stewart, T., and Pegg, A.E. (2018). Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat. Rev. Cancer 18, 681-695. https://doi.org/10.1038/s41568-018-0050-3
- Casti, A., Orlandini, G., Reali, N., Bacciottini, F., Vanelli, M., and Bernasconi, S. (1982). Pattern of blood polyamines in healthy subjects from infancy to the adult age. J. Endocrinol. Invest. 5, 263-266. https://doi.org/10.1007/BF03348334
- Cerrada-Gimenez, M., Tusa, M., Casellas, A., Pirinen, E., Moya, M., Bosch, F., and Alhonen, L. (2012). Altered glucose-stimulated insulin secretion in a mouse line with activated polyamine catabolism. Transgenic Res. 21, 843-853. https://doi.org/10.1007/s11248-011-9579-6
- Coburn, L.A., Singh, K., Asim, M., Barry, D.P., Allaman, M.M., Al-Greene, N.T., Hardbower, D.M., Polosukhina, D., Williams, C.S., Delgado, A.G., et al. (2019). Loss of solute carrier family 7 member 2 exacerbates inflammation-associated colon tumorigenesis. Oncogene 38, 1067-1079. https://doi.org/10.1038/s41388-018-0492-9
- Codoner-Franch, P., Tavarez-Alonso, S., Murria-Estal, R., Herrera-Martin, G., and Alonso-Iglesias, E. (2011). Polyamines are increased in obese children and are related to markers of oxidative/nitrosative stress and angiogenesis. J. Clin. Endocrinol. Metab. 96, 2821-2825. https://doi.org/10.1210/jc.2011-0531
- Darlington, G.J., Ross, S.E., and MacDougald, O.A. (1998). The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem. 273, 30057-30060. https://doi.org/10.1074/jbc.273.46.30057
- Dobrovolskaite, A., Madan, M., Pandey, V., Altomare, D.A., an Phanstiel, O., 4th (2021). The discovery of indolone GW5074 during a comprehensive search for non-polyamine-based polyamine transport inhibitors. Int. J. Biochem. Cell Biol. 138, 106038.
- El Ouarrat, D., Isaac, R., Lee, Y.S., Oh, D.Y., Wollam, J., Lackey, D., Riopel, M., Bandyopadhyay, G., Seo, J.B., Sampath-Kumar, R., et al. (2020). TAZ is a negative regulator of PPARgamma activity in adipocytes and TAZ deletion improves insulin sensitivity and glucose tolerance. Cell Metab. 31, 162-173.e5. https://doi.org/10.1016/j.cmet.2019.10.003
- Hamouda, N.N., Van den Haute, C., Vanhoutte, R., Sannerud, R., Azfar, M., Mayer, R., Cortes Calabuig, A., Swinnen, J.V., Agostinis, P., Baekelandt, V., et al. (2021). ATP13A3 is a major component of the enigmatic mammalian polyamine transport system. J. Biol. Chem. 296, 100182.
- Igarashi, K. and Kashiwagi, K. (2010). Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol. Biochem. 48, 506-512. https://doi.org/10.1016/j.plaphy.2010.01.017
- Ishii, I., Ikeguchi, Y., Mano, H., Wada, M., Pegg, A.E., and Shirahata, A. (2012). Polyamine metabolism is involved in adipogenesis of 3T3-L1 cells. Amino Acids 42, 619-626. https://doi.org/10.1007/s00726-011-1037-5
- Janne, J., Alhonen, L., Pietila, M., and Keinanen, T.A. (2004). Genetic approaches to the cellular functions of polyamines in mammals. Eur. J. Biochem. 271, 877-894. https://doi.org/10.1111/j.1432-1033.2004.04009.x
- Khan, A., Gamble, L.D., Upton, D.H., Ung, C., Yu, D.M.T., Ehteda, A., Pandher, R., Mayoh, C., Hebert, S., Jabado, N., et al. (2021). Dual targeting of polyamine synthesis and uptake in diffuse intrinsic pontine gliomas. Nat. Commun. 12, 971.
- Kim, S., Lee, N., Park, E.S., Yun, H., Ha, T.U., Jeon, H., Yu, J., Choi, S., Shin, B., Yu, J., et al. (2021). T-cell death associated gene 51 is a novel negative regulator of PPARgamma that inhibits PPARgamma-RXRalpha heterodimer formation in adipogenesis. Mol. Cells 44, 1-12. https://doi.org/10.14348/molcells.2020.0143
- Kraus, D., Yang, Q., Kong, D., Banks, A.S., Zhang, L., Rodgers, J.T., Pirinen, E., Pulinilkunnil, T.C., Gong, F., Wang, Y.C., et al. (2014). Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508, 258-262. https://doi.org/10.1038/nature13198
- Landau, G., Ran, A., Bercovich, Z., Feldmesser, E., Horn-Saban, S., Korkotian, E., Jacob-Hirsh, J., Rechavi, G., Ron, D., and Kahana, C. (2012). Expression profiling and biochemical analysis suggest stress response as a potential mechanism inhibiting proliferation of polyamine-depleted cells. J. Biol. Chem. 287, 35825-35837. https://doi.org/10.1074/jbc.M112.381335
- Larsen, N., Vogensen, F.K., van den Berg, F.W., Nielsen, D.S., Andreasen, A.S., Pedersen, B.K., Al-Soud, W.A., Sorensen, S.J., Hansen, L.H., and Jakobsen, M. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5, e9085.
- Lefterova, M.I. and Lazar, M.A. (2009). New developments in adipogenesis. Trends Endocrinol. Metab. 20, 107-114. https://doi.org/10.1016/j.tem.2008.11.005
- Lewerenz, J., Hewett, S.J., Huang, Y., Lambros, M., Gout, P.W., Kalivas, P.W., Massie, A., Smolders, I., Methner, A., Pergande, M., et al. (2013). The cystine/glutamate antiporter system xc- in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid. Redox Signal. 18, 522-555. https://doi.org/10.1089/ars.2011.4391
- Ley, R.E., Backhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., and Gordon, J.I. (2005). Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U. S. A. 102, 11070-11075. https://doi.org/10.1073/pnas.0504978102
- Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022-1023. https://doi.org/10.1038/4441022a
- Li, J., Meng, Y., Wu, X., and Sun, Y. (2020). Polyamines and related signaling pathways in cancer. Cancer Cell Int. 20, 539.
- Linhart, H.G., Ishimura-Oka, K., DeMayo, F., Kibe, T., Repka, D., Poindexter, B., Bick, R.J., and Darlington, G.J. (2001). C/EBPalpha is required for differentiation of white, but not brown, adipose tissue. Proc. Natl. Acad. Sci. U. S. A. 98, 12532-12537. https://doi.org/10.1073/pnas.211416898
- Liu, M.R., Zhu, W.T., and Pei, D.S. (2021). System Xc- : a key regulatory target of ferroptosis in cancer. Invest. New Drugs 39, 1123-1131. https://doi.org/10.1007/s10637-021-01070-0
- Madan, M., Patel, A., Skruber, K., Geerts, D., Altomare, D.A., and Iv, O.P. (2016). ATP13A3 and caveolin-1 as potential biomarkers for difluoromethylornithine-based therapies in pancreatic cancers. Am. J. Cancer Res. 6, 1231-1252.
- McCubbrey, A.L., McManus, S.A., McClendon, J.D., Thomas, S.M., Chatwin, H.B., Reisz, J.A., D'Alessandro, A., Mould, K.J., Bratton, D.L., Henson, P.M., et al. (2022). Polyamine import and accumulation causes immunomodulation in macrophages engulfing apoptotic cells. Cell Rep. 38, 110222.
- Meireles, P., Mendes, A.M., Aroeira, R.I., Mounce, B.C., Vignuzzi, M., Staines, H.M., and Prudencio, M. (2017). Uptake and metabolism of arginine impact Plasmodium development in the liver. Sci. Rep. 7, 4072.
- Murray-Stewart, T.R., Woster, P.M., and Casero, R.A., Jr. (2016). Targeting polyamine metabolism for cancer therapy and prevention. Biochem. J. 473, 2937-2953. https://doi.org/10.1042/BCJ20160383
- Pegg, A.E. (2009). Mammalian polyamine metabolism and function. IUBMB Life 61, 880-894. https://doi.org/10.1002/iub.230
- Pegg, A.E. and Casero, R.A., Jr. (2011). Current status of the polyamine research field. Methods Mol. Biol. 720, 3-35. https://doi.org/10.1007/978-1-61779-034-8_1
- Pitocco, D., Di Leo, M., Tartaglione, L., De Leva, F., Petruzziello, C., Saviano, A., Pontecorvi, A., and Ojetti, V. (2020). The role of gut microbiota in mediating obesity and diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci. 24, 1548-1562.
- Poulin, R., Casero, R.A., and Soulet, D. (2012). Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids 42, 711-723. https://doi.org/10.1007/s00726-011-0987-y
- Ramos-Molina, B., Queipo-Ortuno, M.I., Lambertos, A., Tinahones, F.J., and Penafiel, R. (2019). Dietary and gut microbiota polyamines in obesity- and age-related diseases. Front. Nutr. 6, 24.
- Rosen, E.D., Walkey, C.J., Puigserver, P., and Spiegelman, B.M. (2000). Transcriptional regulation of adipogenesis. Genes Dev. 14, 1293-1307. https://doi.org/10.1101/gad.14.11.1293
- Roy, U.K., Rial, N.S., Kachel, K.L., and Gerner, E.W. (2008). Activated K-RAS increases polyamine uptake in human colon cancer cells through modulation of caveolar endocytosis. Mol. Carcinog. 47, 538-553. https://doi.org/10.1002/mc.20414
- Samal, K., Zhao, P., Kendzicky, A., Yco, L.P., McClung, H., Gerner, E., Burns, M., Bachmann, A.S., and Sholler, G. (2013). AMXT-1501, a novel polyamine transport inhibitor, synergizes with DFMO in inhibiting neuroblastoma cell proliferation by targeting both ornithine decarboxylase and polyamine transport. Int. J. Cancer 133, 1323-1333. https://doi.org/10.1002/ijc.28139
- Soda, K., Kano, Y., Sakuragi, M., Takao, K., Lefor, A., and Konishi, F. (2009). Long-term oral polyamine intake increases blood polyamine concentrations. J. Nutr. Sci. Vitaminol. (Tokyo) 55, 361-366. https://doi.org/10.3177/jnsv.55.361
- Song, J. and Deng, T. (2020). The adipocyte and adaptive immunity. Front. Immunol. 11, 593058.
- Soulet, D., Covassin, L., Kaouass, M., Charest-Gaudreault, R., Audette, M., and Poulin, R. (2002). Role of endocytosis in the internalization of spermidine-C2-BODIPY, a highly fluorescent probe of polyamine transport. Biochem. J. 367, 347-357. https://doi.org/10.1042/BJ20020764
- Soulet, D., Gagnon, B., Rivest, S., Audette, M., and Poulin, R. (2004). A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism. J. Biol. Chem. 279, 49355-49366. https://doi.org/10.1074/jbc.M401287200
- Sugiyama, Y., Nara, M., Sakanaka, M., Gotoh, A., Kitakata, A., Okuda, S., and Kurihara, S. (2017). Comprehensive analysis of polyamine transport and biosynthesis in the dominant human gut bacteria: potential presence of novel polyamine metabolism and transport genes. Int. J. Biochem. Cell Biol. 93, 52-61. https://doi.org/10.1016/j.biocel.2017.10.015
- Tanaka, T., Yoshida, N., Kishimoto, T., and Akira, S. (1997). Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J. 16, 7432-7443. https://doi.org/10.1093/emboj/16.24.7432
- Tang, Q.Q. and Lane, M.D. (1999). Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev. 13, 2231-2241. https://doi.org/10.1101/gad.13.17.2231
- Tontonoz, P., Hu, E., and Spiegelman, B.M. (1994). Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79, 1147-1156. https://doi.org/10.1016/0092-8674(94)90006-x
- van Veen, S., Martin, S., Van den Haute, C., Benoy, V., Lyons, J., Vanhoutte, R., Kahler, J.P., Decuypere, J.P., Gelders, G., Lambie, E., et al. (2020). ATP13A2 deficiency disrupts lysosomal polyamine export. Nature 578, 419-424. https://doi.org/10.1038/s41586-020-1968-7
- Wang, L., Chen, X., and Yan, C. (2022). Ferroptosis: an emerging therapeutic opportunity for cancer. Genes Dis. 9, 334-346. https://doi.org/10.1016/j.gendis.2020.09.005
- Yeon, J., Suh, S.S., Youn, U.J., Bazarragchaa, B., Enebish, G., and Seo, J.B. (2021). Methanol extract of Mongolian Iris bungei Maxim. stimulates 3T3- L1 adipocyte differentiation. J. Nanosci. Nanotechnol. 21, 3943-3949. https://doi.org/10.1166/jnn.2021.19160
- Zahedi, K., Barone, S., and Soleimani, M. (2022). Polyamines and their metabolism: from the maintenance of physiological homeostasis to the mediation of disease. Med. Sci. (Basel) 10, 38.