DOI QR코드

DOI QR Code

How Does Global Warming Sabotage Plant Immunity?

  • Souvik, Dhar (School of Biological Science, College of Natural Sciences, Seoul National University) ;
  • Ji-Young, Lee (School of Biological Science, College of Natural Sciences, Seoul National University)
  • 투고 : 2022.09.26
  • 심사 : 2022.10.18
  • 발행 : 2022.12.31

초록

키워드

과제정보

We thank all members of the Lee lab for their discussions and comments at various stages. This work was supported by the grants NRF-2018R1A5A1023599 and NRF2021R1A2C3006061 to J.-Y.L. from the National Research Foundation of Korea. S.D. was supported by the Brain Korea 21 Four Program.

참고문헌

  1. Bouche, N., Yellin, A., Snedden, W.A., and Fromm, H. (2005). Plant-specific calmodulin-binding proteins. Annu. Rev. Plant Biol. 56, 435-466. https://doi.org/10.1146/annurev.arplant.56.032604.144224
  2. Cheng, C., Gao, X., Feng, B., Sheen, J., Shan, L., and He, P. (2013). Plant immune response to pathogens differs with changing temperatures. Nat. Commun. 4, 2530.
  3. Dhar, S., Kim, H., Segonzac, C., and Lee, J.Y. (2021). The danger-associated peptide PEP1 directs cellular reprogramming in the Arabidopsis root vascular system. Mol. Cells 44, 830-842. https://doi.org/10.14348/molcells.2021.0203
  4. Figueroa-Macias, J.P., Garcia, Y.C., Nunez, M., Diaz, K., Olea, A.F., and Espinoza, L. (2021). Plant growth-defense trade-offs: molecular processes leading to physiological changes. Int. J. Mol. Sci. 22, 693.
  5. Gangappa, S.N., Berriri, S., and Kumar, S.V. (2017). PIF4 coordinates thermosensory growth and immunity in Arabidopsis. Curr. Biol. 27, 243-249. https://doi.org/10.1016/j.cub.2016.11.012
  6. Huang, S., Zhu, S., Kumar, P., and MacMicking, J.D. (2021). A phaseseparatednuclear GBPL circuit controls immunity in plants. Nature 594, 424-429. https://doi.org/10.1038/s41586-021-03572-6
  7. Huot, B., Castroverde, C.D.M., Velasquez, A.C., Hubbard, E., Pulman, J.A., Yao, J., Childs, K.L., Tsuda, K., Montgomery, B.L., and He, S.Y. (2017). Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nat. Commun. 8, 1808.
  8. Huot, B., Yao, J., Montgomery, B.L., and He, S.Y. (2014). Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7, 1267-1287. https://doi.org/10.1093/mp/ssu049
  9. Jing, Y., Zheng, X., Zhang, D., Shen, N., Wang, Y., Yang, L., Fu, A., Shi, J., Zhao, F., Lan, W., et al. (2019). Danger-associated peptides interact with PIN-dependent local auxin distribution to inhibit root growth in Arabidopsis. Plant Cell 31, 1767-1787. https://doi.org/10.1105/tpc.18.00757
  10. Kim, J.H., Castroverde, C.D.M., Huang, S., Li, C., Hilleary, R., Seroka, A., Sohrabi, R., Medina-Yerena, D., Huot, B., Wang, J., et al. (2022). Increasing the resilience of plant immunity to a warming climate. Nature 607, 339-344. https://doi.org/10.1038/s41586-022-04902-y
  11. Kwon, C., Lee, J.H., and Yun, H.S. (2020). SNAREs in plant biotic and abiotic stress responses. Mol. Cells 43, 501-508. https://doi.org/10.14348/molcells.2020.0007
  12. Malamy, J., Hennig, J., and Klessig, D.F. (1992). Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell 4, 359-366. https://doi.org/10.1105/tpc.4.3.359
  13. Neuser, J., Metzen, C.C., Dreyer, B.H., Feulner, C., van Dongen, J.T., Schmidt, R.R., and Schippers, J.H. (2019). HBI1 mediates the trade-off between growth and immunity through its impact on apoplastic ROS homeostasis. Cell Rep. 28, 1670-1678.e3. https://doi.org/10.1016/j.celrep.2019.07.029
  14. Okada, K., Kubota, Y., Hirase, T., Otani, K., Goh, T., Hiruma, K., and Saijo, Y. (2021). Uncoupling root hair formation and defence activation from growth inhibition in response to damage-associated Pep peptides in Arabidopsis thaliana. New Phytol. 229, 2844-2858. https://doi.org/10.1111/nph.17064
  15. Poncini, L., Wyrsch, I., Denervaud Tendon, V., Vorley, T., Boller, T., Geldner, N., Metraux, J.P., and Lehmann, S. (2017). In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer. PLoS One 12, e0185808.
  16. Wang, L., Tsuda, K., Sato, M., Cohen, J.D., Katagiri, F., and Glazebrook, J. (2009). Arabidopsis CaM binding protein CBP60g contributes to MAMPinduced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog. 5, e1000301.
  17. Wang, L., Tsuda, K., Truman, W., Sato, M., Nguyen, L.V., Katagiri, F., and Glazebrook, J. (2011). CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J. 67, 1029-1041. https://doi.org/10.1111/j.1365-313X.2011.04655.x
  18. Won, K.H. and Kim, H. (2020). Functions of the plant Qbc SNARE SNAP25 in cytokinesis and biotic and abiotic stress responses. Mol. Cells 43, 313-322. https://doi.org/10.14348/molcells.2020.2245
  19. Xu, G., Yuan, M., Ai, C., Liu, L., Zhuang, E., Karapetyan, S., Wang, S., and Dong, X. (2017). uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature 545, 491-494. https://doi.org/10.1038/nature22372
  20. Zhu, Y., Qian, W., and Hua, J. (2010). Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog. 6, e1000844.