DOI QR코드

DOI QR Code

Antioxidant Activity of Honeydew Honey Produced by Apis mellifera L.

양봉꿀벌이 생산한 감로꿀의 항산화 활성

  • Se-Gun, Kim (Department of Agricultural Biology, National Institute of Agricultural Sciences) ;
  • Hyo-Young, Kim (Department of Agricultural Biology, National Institute of Agricultural Sciences) ;
  • Hong-Min, Choi (Department of Agricultural Biology, National Institute of Agricultural Sciences) ;
  • Hye-Jin, Lee (Department of Agricultural Biology, National Institute of Agricultural Sciences) ;
  • Sang-Mi, Han (Department of Agricultural Biology, National Institute of Agricultural Sciences)
  • 김세건 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 김효영 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 최홍민 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 이혜진 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 한상미 (농촌진흥청 국립농업과학원 농업생물부)
  • Received : 2022.10.07
  • Accepted : 2022.11.25
  • Published : 2022.12.01

Abstract

To evaluate biological activity of honeydew honey produced by Apis mellifera L. in Korea, we measured antioxidant activity by using DPPH (1,1-diphenyl-2-picryl hydrazyl), ABTS [2,2-azobis(3-ethylbenzothiazoline-6-sulfonate)], FRAP (Ferric reducing antioxidant power), and total polyphenol content assays. Korean honeydew honey respectively scavenged 26% and 86% of DPPH and ABTS radicals at the highest concentration of 10 mg/mL. In the result of FRAP assay, Korean honeydew honey showed activity (126 µM of FRAP value) to reduce Fe3+ to Fe2+. Total polyphenol content was 73.41 mg GAE/kg. Korean honeydew honey exhibited excellent antioxidant activity due to having high radicals scavenging ability and reducing power of ferric ion as well as the presence of phenolic compounds. These findings suggest that Korean honeydew honey has great potential as a functional food material.

국내 생산 감로꿀의 기능성 식품 소재로 활용하기 위하여 DPPH (1,1-diphenyl-2-picryl hydrazyl)와 ABTS [2,2-azobis (3-ethylbenzothiazoline-6-sulfonate)] 라디칼 소거능, FRAP (Ferric reducing antioxidant power) 활성, 총 폴리페놀 함량 분석을 통하여 항산화 활성을 평가하였다. 국내 생산 감로꿀은 DPPH와 ABTS 라디칼 소거 활성을 보였으며 최고농도 10 mg/mL에서 DPPH에 비하여 ABTS 라디칼 소거능이 3배 이상 높게 측정되었다. FRAP 분석에서는 ferric ion (Fe3+)를 126 µM의 ferrous (Fe2+)로 환원시켰다. 또한, 국내 생산 감로꿀에 함유된 폴리페놀성 화합물의 총량은 73.41 mg GAE/kg로 확인되었다. 이상의 연구결과에 비추어 볼 때, 국내 생산 감로꿀의 우수한 라디칼 소거능과 환원력을 가지며 천연 항산화제로 알려진 페놀성 화합물을 존재로 인하여 항산화 활성을 가지는 것으로 확인되었다. 본 연구결과는 국내 생산 감로꿀의 기능성 식품 소재로 활용할 수 있는 기초자료로 제공하는 바이다.

Keywords

Acknowledgement

본연구는 농촌진흥청 공동연구사업(과제번호: PJ01574601)에 의하여 수행되었으므로 감사를 드립니다

References

  1. Bang, H.J., Ahn, M.R., 2019. Antioxidant and antiangiogenic activities of bee pollen collected in various regions of Korea. J. Apic. 34, 87-89. https://doi.org/10.17519/apiculture.2019.04.34.1.87
  2. Choi, S.H., Nam, M.S., 2020. Classification of honeydew and blossom honeys by principal component analysis of physicochemical parameters. Korean J. Agric. Sci. 47, 67-81. https://doi.org/10.7744/KJOAS.20190088
  3. Escuredo, O., Seijo, M.C., 2019. Honey: chemical composition, stability and authenticity. Foods 8, 577.
  4. Haroun, M.I., Poyrazoglu, E.S., Konar, N., Arti, N., 2012. Phenolic acids a flavonoids profiles of some Turkish honeydew and floral honeys. J. Food Technol. 10, 39-45. https://doi.org/10.3923/jftech.2012.39.45
  5. Iglesias, M.T., Martin-Alvarez, P.J., Polo, M.C., de Lorenzo, C. Pueyo, E., 2006. Protein analysis of honeys by fast protein liquid chromatography: application to differentiate floral and honeydew honeys. J. Agric. Food Chem. 54, 8322-8327. https://doi.org/10.1021/jf061900n
  6. Kang, H., Lee, S.G., 2021. Antioxidant capacity of ethanol extracts and fractions from Rubus coreanus Miq. J. Plant Biotechnol. 48, 264-270. https://doi.org/10.5010/JPB.2021.48.4.264
  7. Kim, C.J., Suh, H.J., 2005. Antioxidant activities of rhubarb extracts containing phenolic compounds. J. Korean. Soc. Food Cult. 20, 77-85.
  8. Kim, C.S., Kim, H.K., 2016. Antioxidative activity of Makgeolli supplemented with pollen. J. Foodserv. Managem. 19, 339-354.
  9. Kim, H.K., Lee, M.Y., Hong, I.P., Choi, Y.S., Kim, N.S., Lee, M.L., Lee, S.C., 2010. Antioxidant and antimicrobial capacity of several monofloral honey correlation with phenolic and flavonoid contents. J. Apic. 25, 275-282.
  10. Kim, S.G., Kim, H.Y., Choi, H.M., Lee, H.J., Moon, H.J., Han, S.M., 2021. A rapid method for determination of kynurenic acid in Korean chestnut (Castanea crenata) Honey by UPLC. J. Apic. 36, 183-188.
  11. Kim, S.G., Woo, S.O., Bang, K.W., Kim, H.Y., Choi, H.M., Moon, H.J., Han, S.M., 2019. Amino acids and vitamins analyses of Korean honeydew honey produced in summer. J. Apic. 34, 261-264. https://doi.org/10.17519/apiculture.2019.09.34.3.261
  12. Kim, S.J., 2016. Changes in approximate composition, antioxidant activity and melatonin content of rapeseed during germination. Korean J. Food Preserv. 23, 839-847. https://doi.org/10.11002/KJFP.2016.23.6.839
  13. Lee, B.G., Kim, J.H., Ham, S.G., Lee, C.E., 2014. Study on biological activities of extracts for cosmeceutical development from Lagerstroemia indica L. branch. Korean J. Plant Res. 27, 29-34. https://doi.org/10.7732/KJPR.2014.27.1.029
  14. Lee, H.J., Han, S.M., Woo, S.O., Kim, H.Y., Choi, H.M., Kim, S.G., 2022. Antioxidant activity of Prunus serrulata var. spontanea pollen collected by Apis mellifera. J. Apic. 37, 45-50.
  15. National Institute of Agricultural Science, Rural Development Administration. 2021. Research on the status of beekeeping industry in Korea. Wanju, p. 39.
  16. Pallant, J., 2011. SPSS survival manual-a step by step guide to data analysis using SPSS. 4th ed. Allen and Unwin. Australia.
  17. Pichichero, E., Canuti, L., Canini, A., 2009. Characterisation of the phenolic and flavonoid fractions and antioxidant power of Italian honeys of different botanical origin. J. Sci. Food Agric. 89, 609-616. https://doi.org/10.1002/jsfa.3484
  18. Prasain, J.K., Wang, C.C., Barnes, S., 2004. Mass spectrometric methods for the determination of flavonoids in biological samples. Free Radic. Biol. Medi. 37, 1324-1350. https://doi.org/10.1016/j.freeradbiomed.2004.07.026
  19. Recklies, K., Peukert, C., Kolling-Speer, I., Speer, K., 2021. Differentiation of honeydew honeys from blossom honeys and according to their botanical origin by electrical conductivity and phenolic and sugar Spectra. J. Agric. Food Chem. 69, 1329-1347. https://doi.org/10.1021/acs.jafc.0c05311
  20. Seraglio, S.K.T., Silva, B., Bergamo, G., Brugnerotto, P., Gonzaga, L.V., Fett, R., Costa, A.C.O., 2019. An overview of physicochemical characteristics and health-promoting properties of honeydew honey. Food Res. Int. 119, 44-66. https://doi.org/10.1016/j.foodres.2019.01.028
  21. Solayman, M., Islam, M., Paul, S., Ali, Y., Khalil, M., Alam, N., Gan, S.H., 2016. Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: a comprehensive review. Compr. Rev. Food Sci. Food Saf. 15, 219-233. https://doi.org/10.1111/1541-4337.12182