DOI QR코드

DOI QR Code

인류의 생존 위기 대응을 위한 양잠과 곤충 산업의 현황

Current Status of Sericulture and Insect Industry to Respond to Human Survival Crisis

  • 김아영 (한림대학교 일송생명과학연구소) ;
  • 김기영 (국립농업과학원 곤충양잠산업과) ;
  • 최희정 (서울대학교 농생명과학공동기기원) ;
  • 박현우 ((주)헬스파크) ;
  • 고영호 (한림대학교 일송생명과학연구소)
  • A-Young, Kim (Ilsong Institute of Life Science, Hallym University) ;
  • Kee-Young, Kim (Department Industrial Insect and Sericulture, National Institute of Agricultural Science) ;
  • Hee Jung, Choi (National Instrumentation Center for Environmental Management, Seoul National University) ;
  • Hyun Woo, Park (Health Park co., ltd.) ;
  • Young Ho, Koh (Ilsong Institute of Life Science, Hallym University)
  • 투고 : 2022.08.05
  • 심사 : 2022.11.09
  • 발행 : 2022.12.01

초록

인류는 기후변화와 인구 구성 비율의 급격한 노령화 라는 두 가지 커다란 생존을 위협하는 문제점에 직면해 있다. 기후변화는 경제 발전과 운송 수단의 발달로 화석 연료 사용 증가에 따른 대기 중 온실가스 농도가 증가한 결과이고, 인구 구성 비율의 노령화는 선진국의 의 생명과학 기술 발전과 개인 위생의 증진으로 기대 수명이 증가한 결과이다. 돌이킬 수 없는 전 지구적인 기후변화를 피하기 위해서는 빠른 기간 내에 온실 가스의 배출이 없는 탄소 제로 경제로 전환을 해야 한다. 이 목표를 달성하기 위해서는 농업 중 온실가스의 발생이 가장 많은 낙농축산업을 저탄소 경영방식으로 전환하고 동시에 소비자들의 저탄소 식품들에 대한 인식의 변화가 필요하다. 현재 지구상 이용 가능 초지 중 77%가 가축용 사료 재배에 활용되지만, 인간이 섭취하는 전체 단백질의 37%와 총 열량의 18%만이 낙농축산업에서 얻어질 뿐이다. 그러므로, 가축보다 온실가스 배출량, 물의 사용량이 적고, 사육 공간이 작아도 되며 사료전환율이 높은 식용 곤충을 단백질원으로 활용해야 할 필요성이 있다. 이와 더불어 건강기능 증진 효과가 있다고 과학적으로 밝혀진 누에와 같은 곤충들의 기능성을 활용하여 현재 치료 방법이나 예방법이 확립되지 않은 퇴행성 질환들을 예방하고 치료를 촉진시킬 수 있는 기능성 식품 개발이 필요하다. 곤충은 동물 중 가장 오래 전에 지구상에 나타났고, 인간의 생존 유무와 상관없이 앞으로도 빠르게 진화를 하여 지구의 환경 변화에 적응하고 번성할 것이다. 그러므로, 다양한 식용 곤충과 누에를 포함한 약용 곤충을 이용한 산업은 현재 인류가 직면한 문제를 해결하여 미래에 인간이 지구에서 생존하고 번영할 수 있는 중요한 받침돌이 될 것이다.

Two major problems currently threaten human survival on Earth: climate change and the rapid aging of the population in developed countries. Climate change is a result of the increase in greenhouse gas (GHG) concentrations in the atmosphere due to the increase in the use of fossil fuels owing to economic and transportation development. The rapid increase in the age of the population is a result of the rise in life expectancy due to the development of biomedical science and technology and the improvement of personal hygiene in developed countries. To avoid irreversible global climate change, it is necessary to quickly transition from the current fossil fuel-based economy to a zero-carbon renewable energy-based economy that does not emit GHGs. To achieve this goal, the dairy and livestock industry, which generates the most GHGs in the agricultural sector, must transition to using low-carbon emission production methods while simultaneously increasing consumers' preference for low-carbon diets. Although 77% of currently available arable land globally is used to produce livestock feed, only 37% and 18% of the proteins and calories that humans consume come from dairy and livestock farming and industry. Therefore, using edible insects as a protein source represents a good alternative, as it generates less GHG and reduces water consumption and breeding space while ensuring a higher feed conversion rate than that of livestock. Additionally, utilizing the functionality of medicinal insects, such as silkworms, which have been proven to have certain health enhancement effects, it is possible to develop functional foods that can prevent or delay the onset of currently incurable degenerative diseases that occur more frequently in the elderly. Insects are among the first animals to have appeared on Earth, and regardless of whether humans survive, they will continue to adapt, evolve, and thrive. Therefore, the use of various edible and medicinal insects, including silkworms, in industry will provide an important foundation for human survival and prosperity on Earth in the near future by resolving the current two major problems.

키워드

과제정보

본 연구는 농촌진흥청이 지원하는 연구비(PJ0170242022, 홍잠의 기능성분 구명 및 ICT 기반 안정생산 체계 구축)에 의하여 수행되었다.

참고문헌

  1. Akhtar, M., 2020. In India's Northeast, a rich tradition of insect foods. Sceince The WIRE. https://science.thewire.in/environment/assam-entomophagy-silkworms-proteins-silk/ (accessed on 29 July, 2022).
  2. Alves, R.R., Alves, H.N., 2011 The faunal drugstore: animal-based remedies used in traditional medicines in Latin America. J Ethnobiology Ethnomedicine 7, 9.
  3. Cardenas, D., 2013. Let not thy food be confused with thy medicine: the Hippocratic misquotation. ESPEN J. 8, e260-e262.
  4. Chantawannakul, P., 2020. From entomophagy to entomotherapy. Front Biosci. 25, 179-200. https://doi.org/10.2741/4802
  5. Cho, J.-M., Kim, K.-Y., Ji, S.-D., Kim, E.-H., 2016. Protective effect of boiled and freeze-dried mature silkworm larval powder against diethylnitrosamine-induced hepatotoxicity in mice. J. Cancer Prev. 21, 173-181.
  6. Choi, Y.C., 2013. The trend in China's insect industry. World Agriculture 159, 1-19.
  7. Choi, I.-H., Yu, R., Lim, Y.-J., Choi, G.-S., Choi, S.-U., Hwang, J.-I., Son, J.-S., Chung, T.-H., 2019. Antithrombotic efficacy of Protaetia brevitarsis extract. J. Environ. Sci. Int. 28, 639-643. https://doi.org/10.5322/JESI.2019.28.7.639
  8. Chon, J.-W., Kweon, H., Jo, Y.-Y., Yeo, J., Lee, H.S., 2012. Protective effects of extracts of Protaetia brevitarsis on carbon tetrachloride-induced hepatotoxicity in the mice. J. Seric. Entomol. Sci. 50, 93-100.
  9. Costa-Neto, E.M., 2002. The Use of insects in folk medicine in the state of Bahia, Northeastern Brazil, with notes on insects reported elsewhere in Brazilian folk medicine. Hum. Ecol. 30, 245-263. https://doi.org/10.1023/A:1015696830997
  10. Costa-Neto, E.M., 2005. Entomotherapy, or the medicinal use of insects. J. Ethnobiol. 25, 93-114. https://doi.org/10.2993/0278-0771(2005)25[93:EOTMUO]2.0.CO;2
  11. Das, S., Kumar, B., Singh, D., 2020. Host plant diversity of nonmulberry silkworms: A review. J. Pharmacogn. Phytochem. 3, 109-113.
  12. EPA, 2021. Climate change indicators: greenhouse gases. United States Environmental Protection Agency. https://www.epa.gov/climate-indicators/greenhouse-gases (accessed on 29 July, 2022).
  13. Feng, Y., Chen, X.M., Zhao, M., He, Z., Sun, L., Wang, C.Y., Ding, W.F., 2018. Edible insects in China: utilization and prospects. Insect Sci. 25, 184-198. https://doi.org/10.1111/1744-7917.12449
  14. Feng, Y., Zhao, M., He, Z., Chen, Z., Sun, L., 2009. Research and utilization of medicinal insects in China. Entomol. Res. 39, 313-316. https://doi.org/10.1111/j.1748-5967.2009.00236.x
  15. Ferreira, F.S., Brito, S.V., Ribeiro, S.C., Almeida, W.O., Alves, R.R., 2009. Zootherapeutics utilized by residents of the community Poco Dantas, Crato-CE, Brazil. J. Ethnobiol. 5, 21.
  16. Filou, E., 2021. Africa: all the buzz about edible insects, the africa report, Canada. https://www.theafricareport.com/79262/insectsare-big-business-as-food-for-animals-and-people/ (accessed on 29 July, 2022).
  17. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., Tempio, G., 2013. Tackling climate change through livestock - a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.
  18. Govorushko, S., 2019. Global status of insects as food and feed source: a review. Trends Food Sci. Technol. 91, 436-445. https://doi.org/10.1016/j.tifs.2019.07.032
  19. Grau, T., Vilcinskas, A., Joop, G., 2017. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Z. Naturforsch., C, J. Biosci. 72, 339-349.
  20. Hanboonsong, Y., Jamjanya, T., Durst, P.B., 2013. Six-legged livestock: edible insect farming, collection and marketing in Thailand. RAP Publication 3, FAO Rgional office for Asia and the Pacific, Bankok.
  21. Ji, S.D., Kim, N.S., Kweon, H., Choi, B.H., Kim, K.Y., Koh, Y.H., 2016a. Nutrition composition differences among steamed freezedried mature silkworm larval powders made from 3 Bombyx mori varieties weaving different colored cocoons. Int. J. Indust. Entomol. 33, 6-14. https://doi.org/10.7852/IJIE.2016.33.1.6
  22. Ji, S.D., Kim, N.S., Kweon, H., Choi, B.H., Yoon, S.M., Kim, K.Y., Koh, Y.H., 2016b. Nutrient compositions of Bombyx mori mature silkworm larval powders suggest their possible health improvement effects in humans. J. Asia-Pacific Entomol. 19, 1027-1033. https://doi.org/10.1016/j.aspen.2016.08.004
  23. Ji, S.D., Kim, N.S., Lee, J.Y., Kim, M.J., Kweon, H., Sung, G., Kang, P.D., Kim, K.Y., 2015. Development of processing technology for edible mature silkworm. J. Seric. Entomol. Sci. 53, 38-43. https://doi.org/10.7852/JSES.2015.53.1.38
  24. Ji, S.-D., Kim, S.-B., Kim, K.-Y., Kim, N.-S., Kim, S.-W., Jo, Y.-Y., Kim, J.-G., Kim, Y.-K., Seok, Y.-S., Lim, J.R., Koo, H.-Y., Lee, H.-T., 2019. Contents of nutrients in ultra-fine powders of steamed and lyophilized mature silkworms generated by four silkworm varieties. J. Asia-Pacific Entomol. 22, 969-974. https://doi.org/10.1016/j.aspen.2019.07.009
  25. Ji, S.D., Son, J.G., Kim, S., Kim, N.S., Kim, K.Y., Kweon, H., Sung, G.K., Koh, Y.H., 2017. Production techniques to improve the quality of steamed and freeze-dried mature silkworm larval powder. Int. J. Indust. Entomol. 34, 1-11. https://doi.org/10.7852/IJIE.2017.34.1.1
  26. Ji, S.D., Son, J.G., Koh, Y.H., 2016c. Some skeletons in the mature silkworm larvae: not only spinning silk threads but also preventing Parkinson's disease. J. Alzheimers Dis. Parkisonism 6, 7.
  27. Ketchell, M., 2019. Why we're involved in a project in Africa to promote edible insects. The Conversation. https://theconversation.com/why-were-involved-in-a-project-in-africa-to-promot e-edible-insects-125828 (accessed on 29 July, 2022).
  28. Kim, K.-Y., Koh, Y.H. 2022. The past, present and future of silkworm a as a natural health food. Food Sci. Ind. 55, 154-165. Kim, K.-Y., Osabutey, A.F., Nguyen, P., Kim, S.B., Jo, Y.-Y.,
  29. Kweon, H.Y., Lee, H.-T., Ji, S.-D., Koh, Y.H., 2019a. The experimental evidences of steamed and freeze-dried mature silkworm powder as the calorie restriction mimetics. Int. J. Indust. Entomol. 39, 1-8. https://doi.org/10.7852/ijie.2019.39.1.1
  30. Kim, M.A., Hwang, J.S., Yun, E.Y., Kang, P.D., 2014. Edible & medicinal insects, RDA Interrobang. Rural Development Administration, Suwon, Republic of Korea.
  31. Kim, T.-K., Yong, H.I., Kim, Y.-B., Kim, H.-W., Choi, Y.-S., 2019b. Edible insects as a protein source: a review of public perception, processing technology, and research trends. Food Sci. Anim. Resour. 39, 521-540. https://doi.org/10.5851/kosfa.2019.e53
  32. KIOM, 2021. Orienal Medicine Classic DB. Korea Institute of Oriental Medicine, Daejeon. https://mediclassics.kr/books/8/volume/21 (accessed on 29 July, 2022).
  33. Koh, Y.H., 2020. The memory enhancement and healthspan extension effects of HongJam. The Policy Report of National Institute for Korean Medicine Development 5, 22-33.
  34. Kontis, V., Bennett, J.E., Mathers, C.D., Li, G., Foreman, K., Ezzati, M., 2017. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet 389, 1323-1335. https://doi.org/10.1016/S0140-6736(16)32381-9
  35. Lee, D.Y., Cho, J.M., Yun, S.M., Hong, K.S., Ji, S.D., Son, J.G., Kim, E.H., 2017. Comparative effect of silkworm powder from 3 Bombyx mori varieties on ethanol-induced gastric injury in rat model. Int. J. Indust. Entomol. 35, 14-21. https://doi.org/10.7852/IJIE.2017.35.1.14
  36. Lim, H.S., Kim, J.S., Moon, B.C., Ryu, S.M., Lee, J., Park, G., 2019. Batryticatus Bombyx protects dopaminergic neurons against MPTP-Induced neurotoxicity by inhibiting oxidative damage. Antioxidants 8, 574.
  37. Madreiter-Sokolowski, C.T., Sokolowski, A.A., Waldeck-Weiermair, M., Malli, R., Graier, W.F., 2018. Targeting mitochondria to counteract age-related cellular dysfunction. Genes 9, 165.
  38. Mai, L.X., Kang, S.-K., Jo, Y.-Y., Nguyne, P., Kim, A-Y., Kim, K.-Y., Kim, N.S., Koh, Y.H., 2022. an alkaline protease-digestion of silkworm powder enhances its effects over healthspan, autophagy, and mitochondria function in a Rotenone-induced Drosophila model. Front. Nutr. 9, 808295.
  39. Miranda, C.D., Cammack, J.A., Tomberlin, J.K., 2020. Mass production of the black soldier fly, Hermetia illucens (L.), (Diptera: Stratiomyidae) reared on three manure types. Animals 10, 1243.
  40. Mitsuhashi, J., 2016. Edible insects of the world. CRC press, Boca Raton, FL.
  41. Mohd Taufek, N., Simarani, K., Muin, H., Aspani, F., Raji, A., Alias, Z., Abdul Razak, S., 2018. Inclusion of cricket (Gryllus bimaculatus) meal in African catfish (Clarias gariepinus) feed influences disease resistance. J. Fish. 6.
  42. Mozhui, L., Kakati, L.N., Meyer-Rochow, V.B., 2021. Entomotherapy: a study of medicinal insects of seven ethnic groups in Nagaland, North-East India. J. Ethnobiol. 17, 17.
  43. Nguyen, P., Kim, K.-Y., Kim, A.Y., Choi, B.-H., Osabutey, A.F., Park, Y.H., Lee, H.-T., Ji, S.D., Koh, Y.H., 2020. Mature silkworm powders ameliorated scopolamine-induced amnesia by enhancing mitochondrial functions in the brains of mice. J. Funct. Foods 67, 103886.
  44. Nguyen, P., Kim, K.-Y., Kim, A.Y., Kang, S., Osabutey, A.F., Jin, H., Guo, Y., Park, H., Suh, J.-W., Koh, Y.H., 2021. The additive memory and healthspan enhancement effects by the combined treatment of mature silkworm powders and Korean angelica extracts. J. Ethnopharmacol. 281, 114520.
  45. Nguyen, P., Kim, K.Y., Kim, A.Y., Kim, N.S., Kweon, H., Ji, S.D., Koh, Y.H., 2016. Increased healthspan and resistance to Parkinson's disease in Drosophila by boiled and freeze-dried mature silk worm larval powder. J. Asia-Pacific Entomol. 19, 551-561. https://doi.org/10.1016/j.aspen.2016.05.003
  46. NHMI, 2021. National Herbal Medicine Information (NHMI), Cheongju, Korea.
  47. Niassay, S., Ekesi, S., 2021. Eating insects has long made sense in Africa. The world must catch up. in: Ketchell, M (Ed.), The Conservation Media Group Ltd., Camden, ME.
  48. Nowak, V., Persijn, D., Rittenschober, D., Charrondiere, U.R., 2016. Review of food composition data for edible insects. Food Chem. 193, 39-46. https://doi.org/10.1016/j.foodchem.2014.10.114
  49. OECD, 2019. Health at a galnce 2019. OECD Publishing, Paris.
  50. Oonincx, D.G.A.B., van Itterbeeck, J., Heetkamp, M.J.W., van den Brand, H., van Loon, J.J.A., van Huis, A., 2011. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLOS ONE 5, e14445.
  51. Park, S.J., Kim, K.Y., Baik, M.Y., Koh, Y.H., 2022. Sericulture and the edible-insect industry can help humanity survive: insects are more than just bugs, food, or feed. Food Sci. Biotechnol. 31, 657-668. https://doi.org/10.1007/s10068-022-01090-3
  52. Poshadri, A., Palthiya, R., Shiva Charan, G., Butti, P., 2018. Insects as an alternate source for food to conventional food animals. Int. J. Pure App. Biosci. 6.
  53. Ramos-Blorduy, J., En, M., Moreno, C., 1988. The utilization of insects in the empirical medicine of ancient Mexicans. J. Ethnobiol. 8, 195-202.
  54. Reverberi, M., 2020. Edible insects: cricket farming and processing as an emerging market. J. Insects Food Feed 6, 211-220. https://doi.org/10.3920/JIFF2019.0052
  55. Ribeiro, N., Abelho, M., Costa, R., 2018. A review of the scientific literature for optimal conditions for mass rearing Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 53, 434-454.
  56. Ritchie, H., 2019. Half of the world's habitable land is used for agriculture, Our World in Data. Oxford Martin School. https://ourworldindata.org/global-land-for-agriculture (accessed on 29 July, 2022).
  57. Ryu, K.S., Lee, H.S., Kim, I.S., 2002. Effects and mechanisms of silkworm powder as a blood glucose-lowering agent. Int. J. Indust. Entomol. 4, 93-100.
  58. Schabereiter-Gurtner, C., Saiz-Jimenez, C., Pinar, G., Lubitz, W., Rolleke, S., 2002. Altamira cave Paleolithic paintings harbor partly unknown bacterial communities. FEMS Microbiol. Lett. 211, 7-11. https://doi.org/10.1016/S0378-1097(02)00668-7
  59. Shahbandeh, M., 2018. Forecast market value of edible insects worldwide from 2018 to 2023. Stastita, Hamburg, Germany. https://www.statista.com/statistics/882577/global-number-edible-insect-species/ (accessed on 29 July, 2022).
  60. Sharma, K., Kapoor, B., 2020. Sericulture as a profit-based industry - a review. Ind. J. Pure App. Biosci. 8, 550-562.
  61. Sirimungkararat, S., Saksirirat, W., Nopparat, T., Natongkham, A., 2010. Edible products from eri and mulberry silkworms in Thailand, forest insects as food: humans bite back. FAO UN Regional office for Asia and the Pacific, Bangkok, Thailand, pp. 189-200.
  62. Sun-Waterhouse, D., Waterhouse, G.I., You, L., Zhang, J., Liu, Y., Ma, L., Gao, J., Dong, Y., 2016. Transforming insect biomass into consumer wellness foods: a review. Food Res. Int. 89, 129-151. https://doi.org/10.1016/j.foodres.2016.10.001
  63. Tang, C., Yang, D., Liao, H., Sun, H., Liu, C., Wei, L., Li, F., 2019. Edible insects as a food source: a review. Food Sci. Nutr. 1, 8.
  64. Tang, P., 2014. The 10 tastiest insects and bugs in Mexico. Lonely Planer. https://www.lonelyplanet.com/articles/the-10-tastiestinsects-and-bugs-in-mexico (accessed on 29 July, 2022).
  65. Testa, G., Fiorella, B., Giuseppe, P., Elena, C., 2014. Calorie restriction and dietary restriction mimetics: A strategy for improving healthy aging and longevity. Cur. Pharm. Des. 20, 2950-2977. https://doi.org/10.2174/13816128113196660699
  66. Theurey, P., Pizzo, P., 2018. The aging mitochondria. Genes 9, 22.
  67. Tunes, S., 2020. Entomophagy: edible insects. Pesquisa Fapesp Magazine. https://revistapesquisa.fapesp.br/en/edible-insects/ (accessed on 29 July, 2022).
  68. van Huis, A., 2013. Potential of insects as food and feed in assuring food security. Ann. Rev. Entomol. 58, 563-583. https://doi.org/10.1146/annurev-ento-120811-153704
  69. van Huis, A., Itterbeeck, J.V., Klunder, H., Mertens, E., Halloran, A., Muir, G., Vantomme, P., 2013. Edible insects Future prospects for food and feed security. Food and Agriculture Organization of the United Nations, Rome.
  70. van Huis, A., Oonincx, D.G.A.B., 2017. The environmental sustainability of insects as food and feed. a review. Agron. for Sustain. Dev. 37, 43.
  71. Wang, Y.-S., Shelomi, M., 2017. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 6, 91.
  72. Willmes, C., 2020. Mitochondria - a powerful therapeutic target. Trends Mol. Med. 26, 1-2. https://doi.org/10.1016/j.molmed.2019.10.006
  73. Xu, X., Sharma, P., Shu, S., Lin, T.-S., Ciais, P., Tubiello, F.N., Smith, P., Campbell, N., Jain, A.K., 2021. Global greenhouse gas emissions from animal - based foods are twice those of plant - based foods. Nat. Food 2, 724-732. https://doi.org/10.1038/s43016-021-00358-x
  74. Yen, A., 2015. Insects as food and feed in the Asia Pacific region: current perspectives and future directions. J. Insects Food Feed 1, 33-55. https://doi.org/10.3920/JIFF2014.0017
  75. Yun, S.-M., Cho, J.-M., Hong, K.-S., Lee, D.-Y., Ji, S.-D., Son, J.-G., Kim, E.-H., 2017. Gastroprotective effect of mature silkworm, Bombyx mori against ethanol-induced gastric mucosal injuries in rats. J. Funct. Foods 39, 279-286. https://doi.org/10.1016/j.jff.2017.10.036