DOI QR코드

DOI QR Code

Analysis of Public Sector Sharing Rate based on the IoT Device Classification Methodology

사물인터넷(IoT) 기기 분류 체계 기반 공공분야 점유율 분석

  • Lee, Hyung-Woo (Division of Computer Engineering, Hanshin University)
  • 이형우 (한신대학교 컴퓨터공학부)
  • Received : 2021.12.14
  • Accepted : 2022.02.20
  • Published : 2022.02.28

Abstract

The Internet of Things (IoT) provides data convergence and sharing functions, and IoT technology is the most fundamental core technology in creating new services by convergence of various cutting-edge technologies. However, there are different classification systems for the Internet of Things, and when it is limited to the domestic public sector, it is difficult to properly grasp the current status of which devices are installed and operated with what share, and systematic data or research The results are very difficult to find. Therefore, in this study, the relevance of the classification system for IoT devices was analyzed according to reality based on sales, shipments, and growth rate, and based on this, the actual share of IoT devices among domestic public institutions was analyzed in detail. The derived detailed analysis results are expected to be efficiently utilized in the process of selecting IoT devices for research and analysis to advance information protection technology such as responding to malicious code attacks on IoT devices, analyzing incidents, and strengthening security vulnerabilities.

사물인터넷(IoT)은 데이터의 융합과 공유 기능을 제공하며, 다양한 첨단 기술이 함께 융복합되어 새로운 서비스를 창출하는 데 있어서 가장 근간이 되는 핵심 기술 분야이다. 하지만, 사물인터넷에 대한 분류 체계가 제각각이며 국내 공공분야를 대상으로 한정 지었을 경우 실제로 어느 정도의 점유율로 어떤 기기 등이 설치되어 운영되고 있는지에 대한 현황을 제대로 파악하기가 어려울 정도로 체계화된 자료나 연구 결과를 발견하기가 매우 어렵다. 따라서 본 연구에서는 사물인터넷 기기에 대한 분류 체계를 매출액과 출하량 및 성장률에 근거하여 현실에 맞게 관련성을 분석한 후 이를 토대로 국내 공공기관을 대상으로 실제 IoT 기기의 점유율 등을 상세 분석하였다. 도출된 분석 결과는 앞으로 IoT 기기에 대한 악성코드 공격 대응, 침해사고 분석 및 보안 취약성 강화 등 정보보호 기술 고도화를 위한 연구 분석용 IoT 기기를 선정하는 과정에서 효율적으로 활용 될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 한신대학교 교내 일반연구비의 지원으로 수행된 연구임

References

  1. S.N.Swamy and S.R.Kota, "An Empirical Study on System Level Aspects of Internet of Things (IoT)," IEEE Access, Vol.8,pp.188082-188134, 2020. https://doi.org/10.1109/access.2020.3029847
  2. E. Kim, K. Kim, C. Leem, C. Lee, "A Study on Development and Application of Taxonomy of Internet of Things Service," The Journal of Society for e-Business Studies, Vol.20, No.2, May 2015, pp.107-123.
  3. Alfonso, V., Eric, G., Sree, C., and Jouni, F., Market Trends: TSPs Must Invest in the Rapidly Evolving IoT Ecosystems Now, Gartner, 2013.
  4. Ministry of Science and ICT, NIPA, 2020 IoT Industry Survey, 2020.
  5. NIPA, GIP Global ICT Portal, Global IoT(Internet of Things) Market, 2020
  6. Ministry of the Interior and Safety, NIPA, Government guidelines for IoT adoption, 2019.
  7. Gartnet, Internet of Things: Unlocking True Digital Business Potential, https://www.gartner.com/en/information-technology/insights/internet-of-things
  8. IDC, Worldwide Intenet of Things Forecast, 2020-2024. https://www.idc.com/getdoc.jsp?containerId=US45861420
  9. IDC, IDC: Global IoT Market Report, 2021. https://medium.com/tech-in-china/idc-global-iot-market-report-5cb5be303e51
  10. H.Lee, "Intrusion Artifact Acquisition Method based on IoT Botnet Malware," Journal of The Korea Internet of Things Society, Vol.7, No.3, pp.1-8, 2021.
  11. S.Ramesh and M.Govindarasu, "An Efficient Framework for Privacy-Preserving Computations on Encrypted IoT Data," in IEEE Internet of Things Journal, Vol.7, No.9, pp.8700-8708, 2020. https://doi.org/10.1109/jiot.2020.2998109
  12. H.Seo, J.K.Park, "The prevent method of data loss due to differences in bit rate between heterogeneous IoT devices," Journal of the Korea Institute of Information and Communication Engineering, Vol.23, No.7, pp.829~836, 2019. https://doi.org/10.6109/JKIICE.2019.23.7.829
  13. Maria Stoyanova, Yannis Nikoloudakis, Spyridon Panagiotakis, Evangelos Pallis, and Evangelos K. Markakis, "A Survey on the Internet of Things (IoT) Forensics: Challenges, Approaches, and Open Issues," IEEE COMMUNICATIONS SURVEYS & TUTORIALS, Vol.22, No.2, pp.1191-1221, SECOND QUARTER 2020. https://doi.org/10.1109/COMST.2019.2962586
  14. Ibrar Yaqoob, Ibrahim Abaker Targio Hashem, Arif Ahmed, S. M. Ahsan Kazmia, Choong Seon Hong, "Internet of things forensics: Recent advances, taxonomy, requirements, and open challenges," Future Generation Computer Systems.September 2018.
  15. M. Wazzan, D. Algazzawi, O. Bamasaq, A. Albeshri, L. Cheng, "Internet of Things Botnet Detection Approaches: Analysis and Recommendations for Future Research," Applied Science Vol.11, 5713, 2021. https://doi.org/10.3390/app11125713
  16. A. Alenezi, H. Atlam, R. Alsagri, M. Alassafi, and G. Wills, "IoT Forensics: A State-of-the-Art Review, Challenges and Future Directions," Proceedings of the 4th International Conference on Complexity, Future Information Systems and Risk (COMPLEXIS 2019), pages 106-115.
  17. Weam Saadi Hamza, Hassan Muayad Ibrahim, Methaq Abdullah Shyaa, Jane J. Stephan, "IoT Botnet Detection: Challenges and Issues," Test Engineering & Management, Vol.83, pp.15092-15097, 2020.