DOI QR코드

DOI QR Code

Laser-Induced Fluorescence Characterization for Real-Time Microplastic Counting

실시간 미세플라스틱 카운팅을 위한 레이저 유도 형광 특성 분석

  • Ko, Seunghyeon (Jeju Special Self-Governing Province, Korea Institute of Industrial Technology) ;
  • Oh, Geum-Yoon (Jeju Special Self-Governing Province, Korea Institute of Industrial Technology)
  • 고승현 (한국생산기술연구원 제주본부 청정웰빙연구그룹) ;
  • 오금윤 (한국생산기술연구원 제주본부 청정웰빙연구그룹)
  • Received : 2021.10.22
  • Accepted : 2021.10.27
  • Published : 2022.03.01

Abstract

In this paper, laser-induced fluorescence properties of four plastics were characterized through spectrometer analysis for real-time microplastic counting. Recently, environmental problems related to microplastics have emerged. In order to detect microplastics, analysis methods such as FT-IR and Raman are used. However, they have the disadvantages of being time-consuming and requiring a pretreatment process. In most plastic products on the market, 10% to 30% of plasticizers and reinforcing agents are added. Therefore, most microplastics present in seawater and freshwater emit fluorescence signals by 270 nm UV light source regardless of their type due to their molecular structure due to additives. Real-time microplastics counting is possible more easily by using the proposed laser-induced fluorescence detection method because of the fluorescence expression characteristic of 340 nm that appears due to the plasticizer of plastics.

Keywords

Acknowledgement

본 논문은 2021년도 중소벤처기업부의 중소기업기술혁신개발사업(시장확대형) [S3025249]과 한국생산기술연구원 기관주요사업 "청정 생산 공정기술 기반 스마트 웰니스케어 핵심기술 개발 (kitech EH-21-0050)"의 지원으로 수행한 연구입니다.

References

  1. A. L. Andrady, Mar. Pollut. Bull., 62, 1596 (2011). [DOI: https://doi.org/10.1016/j.marpolbul.2011.05.030]
  2. F. Corami, B. Rosso, E. Morabito, V. Rensi, A. Gambaro, and C. Barbante, Sci. Total Environ., 797, 148937 (2021). [DOI: https://doi.org/10.1016/j.scitotenv.2021.148937]
  3. D. H. Jeong, B. Ju, W. Lee, H. Chung, J. Park, and C. Kim, J. Korean Soc. Water Wastewater, 32, 337 (2018). [DOI: https://doi.org/10.11001/jksww.2018.32.4.337]
  4. J. S. Kim, H. J. Lee, S. K. Kim, and H. J. Kim, Environ. Sci. Technol., 52, 12819 (2018). [DOI: https://doi.org/10.1021/acs.est.8b04180]
  5. L. Lv, L. He, S. Jiang, J. Chen, C. Zhou, J. Qu, Y. Lu, P. Hong, S. Sun, and C. Li, Sci. Total Environ., 728, 138449 (2020). [DOI: https://doi.org/10.1016/j.scitotenv.2020.138449]
  6. J. Shan, J. Zhao, Y. Zhang, L. Liu, F. Wu, and X. Wang, Anal. Chim. Acta, 1050, 161 (2019). [DOI: https://doi.org/10.1016/j.aca.2018.11.008]
  7. X. Sun, J. Liang, M. Zhu, Y. Zhao, and B. Zhang, Environ. Pollut., 242, 585 (2018). [DOI: https://doi.org/10.1016/j.envpol.2018.07.014]
  8. J. L. Xu, K. V. Thomas, Z. Luo, and A. A. Gowen, Trac-Trend. Anal. Chem., 119, 115629 (2019). [DOI: https://doi.org/10.1016/j.trac.2019.115629]
  9. M. Than Htun, J. Polym. Res., 19, 9823 (2012). [DOI: https://doi.org/10.1007/s10965-012-9823-7]
  10. V. Spizzichino, L. Caneve, F. Colao, and L. Ruggiero, Appl. Spectrosc., 70, 1001 (2016). [DOI: https://doi.org/10.1177/0003702816641267]