DOI QR코드

DOI QR Code

비정질 V2O5 중간층 삽입을 통한 고성능 LNMO기반 박막 배터리 개발

Development of High-Performance LNMO Based Thin-Film Battery through Amorphous V2O5 Interlayer Insertion

  • 권오혁 (충남대학교 신소재공학과) ;
  • 김종헌 (충남대학교 신소재공학과) ;
  • 박준섭 (충남대학교 신소재공학과) ;
  • 김현석 (충남대학교 신소재공학과)
  • Kwon, Oh Hyuk (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Jong Heon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Park, Jun Seob (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyun-Suk (Department of Materials Science and Engineering, Chungnam National University)
  • 투고 : 2021.10.15
  • 심사 : 2021.11.05
  • 발행 : 2022.03.01

초록

All-solid-state thin-film battery can realize the integration of electronic circuits into small devices. However, a high voltage cathode material is required to compensate for the low energy density. Therefore, it is necessary to study all-solid-state thin-film battery based on the high voltage cathode material LNMO. Nevertheless, the electrochemical properties deteriorate due to the problem of the interface between LiNi0.5Mn1.5O4 (LNMO) and the solid electrolyte LiPON. In this study, to solve this problem, amorphous V2O5 was deposited as an interlayer between LNMO and LiPON. We confirmed the possibility of improving cycle performance of LNMO based thin-film battery. We expect that the results of this study can extend the battery lifespan of small devices using LNMO based all-solid-state thin-film battery.

키워드

과제정보

본 연구는 충남대학교의 지원을 받아 수행되었습니다.

참고문헌

  1. G. Zubi, R. Dufo-Lopez, M. Carvalho, and G. Pasaoglu, Renew. Sustainable Energy Rev., 89, 292 (2018). [DOI: https://doi.org/10.1016/j.rser.2018.03.002]
  2. K. M. Winslow, S. J. Laux and T. G. Townsend., Resour., Conservation Recycl., 129, 263 (2018). [DOI: https://doi.org/10.1016/j.resconrec.2017.11.001]
  3. S. Aslam, R.U.R. Sagar, Y. Liu, T. Anwar, L. Zhang, M. Zhang, N. Mahmood, and Y. Qiu, Appl. Mater. Today., 17, 123 (2019). [DOI: https://doi.org/10.1016/j.apmt.2019.08.003]
  4. M. Yuan and K. Liu., J. Energy Chem., 43, 58 (2020). [DOI: https://doi.org/10.1016/j.jechem.2019.08.008]
  5. J. H. Pikul, H. G. Zhang, J. Cho, P. V. Braun, and W. P. King, Nature Commun., 4, 1 (2013). [DOI: https://doi.org/10.1038/ncomms 2747]
  6. K. Kataoka, T. Akao, H. Nagata, H. Nagai, J. Akimoto, and J. Akedo, ACS Central Science., 12, 28 (2019). [DOI: https://doi.org/10.5571/syntheng.12.1_29]
  7. S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park, T. Y. Kim, S. W. Baek, J. M. Lee, S. G. Doo, and N. Machida, J. Power Sources., 248, 943 (2014). [DOI: https://doi.org/10.1016/j.jpowsour.2013.10.005]
  8. H. S. Shin, W. G. Ryu, M. S. Park, K. N. Jung, H. Kim, and J. W. Lee, ChemSusChem., 11, 3184 (2018). [DOI: https://doi.org/10.1002/cssc.201801399]
  9. W. Zhou, Y. Li, S. Xin, and J. B. Goodenough, ACS Central Sci., 3, 52 (2017). [DOI: https://doi.org/10.1021/acscentsci.6b00321]
  10. N. Dudney, Mater. Sci. Eng: B., 116, 245 (2005). [DOI: https://doi.org/10.1016/j.mseb.2004.05.045]
  11. M. Gockeln, J. Glenneberg, M. Busse, S. Pokhrel, L. Madler, and R. Kun, Nano Energy., 49, 564 (2018). [DOI: https://doi.org/10.1016/j.nanoen.2018.05.007]
  12. J. H. Kim, C. F. Xiao, J. Han, Y. J. Kim, S. Yagi, and H. S. Kim, Ceram. Int., 46, 19960 (2020). [DOI: https://doi.org/10.1016/j.ceramint.2020.05.063]
  13. E. Jeong, C. Hong, Y. Tak, S. C. Nam, and S. Cho, J. Power Sources., 159, 223 (2006). [DOI: https://doi.org/10.1016/j.jpowsour.2006.04.042]
  14. C. S. Nimisha, K. Y. Rao, G. Venkatesh, G. M. Rao, and N. Munichandraiah, Thin Solid Films., 519, 3401 (2011). [DOI: https://doi.org/10.1016/j.tsf.2011.01.087]
  15. J. J. Pan, B. Chen, Y. Xie, N. Ren, and T. F. Yi, Mater. Lett., 253, 136 (2019). [DOI: https://doi.org/10.1016/j.matlet.2019.06.062]
  16. J. H. Kim, J. Park, K. Park, S. H. Cho, Y. C. Park, C. Kim, I. D. Kim, K. Park, and H. S. Kim, J. Electroceram., 42, 104 (2019). [DOI : https://doi.org/10.1007/s10832-018-0168-4]