Acknowledgement
This work was supported by grant Proj. No. NRF-2020-R1A2C1A-01101518 from National Research Foundation of Korea. The first author was supported by grant Proj. No. NRF-2019-R1I1A1A-01050300, the second author was supported by grant Proj. No. NRF-2018-R1D1A1B-05040381 and the third author was supported by the Pukyong National University Research Fund in 2019.
References
- J. F. Adams, Lectures on Exceptional Lie Groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996.
- W. Ballmann, Lectures on Kahler manifolds, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zurich, 2006. https://doi.org/10.4171/025
- J. Berndt and Y. J. Suh, Hypersurfaces in noncompact complex Grassmannians of rank two, Internat. J. Math. 23 (2012), no. 10, 1250103, 35 pp. https://doi.org/10.1142/S0129167X12501030
- J. Berndt and Y. J. Suh, Contact hypersurfaces in Kahler manifolds, Proc. Amer. Math. Soc. 143 (2015), no. 6, 2637-2649. https://doi.org/10.1090/S0002-9939-2015-12421-5
- J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in Kahler manifolds, Commun. Contemp. Math. 23 (2021), no. 1, 1950039, 33 pp. https://doi.org/10.1142/s0219199719500391
- J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in Kahler manifolds, Commun. Contemp. Math. 23 (2021), no. 1, 1950039, 33 pp. https://doi.org/10.1142/s0219199719500391
- J. Berndt and Y. J. Suh, Real hypersurfaces in hermitian symmetric spaces, Advances in Analysis and Geometry, Editor in Chief, Jie Xiao, Walter de Gruyter GmbH, Berlin/Boston (in press).
- D. E. Blair, Almost contact manifolds with Killing structure tensors, Pacific J. Math. 39 (1971), 285-292. http://projecteuclid.org/euclid.pjm/1102969563 https://doi.org/10.2140/pjm.1971.39.285
- A. Borel and J. De Siebenthal, Les sous-groupes ferm'es de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200-221. https://doi.org/10.1007/BF02565599
- K. Heil, A. Moroianu, and U. Semmelmann, Killing and conformal Killing tensors, J. Geom. Phys. 106 (2016), 383-400. https://doi.org/10.1016/j.geomphys.2016.04.014
- S. Helgason, Differential geometry, Lie groups, and symmetric spaces, corrected reprint of the 1978 original, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, RI, 2001. https://doi.org/10.1090/gsm/034
- I. Jeong, C. J. G. Machado, J. D. P'erez, and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with 𝕯⊥-parallel structure Jacobi operator, Internat. J. Math. 22 (2011), no. 5, 655-673. https://doi.org/10.1142/S0129167X11006957
- H. Lee, S. Kim, and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition II, Czechoslovak Math. J. 64(139) (2014), no. 1, 133-148. https://doi.org/10.1007/s10587-014-0089-6
- R.-H. Lee and T.-H. Loo, Hopf hypersurfaces in complex Grassmannians of rank two, Results Math. 71 (2017), no. 3-4, 1083-1107. https://doi.org/10.1007/s00025-016-0601-4
- H. Lee, Y. J. Suh, and C. Woo, Reeb parallel Ricci tensor for homogeneous real hypersurfaces in complex hyperbolic two-plane Grassmannians, Math. Nachr. 288 (2015), 1-12.
- H. Lee, Y. J. Suh, and C. Woo, Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting structure Jacobi operators, Mediterr. J. Math. 13 (2016), no. 5, 3389-3407. https://doi.org/10.1007/s00009-016-0692-x
- H. Lee, Y. J. Suh, and C. Woo, Quadratic Killing structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians, arXiv:2010.13267 [math.DG].
- H. Lee, C. Woo, and Y. J. Suh, Quadratic Killing normal Jacobi operator for real hypersurfaces in complex Grassmannians of rank 2, J. Geom. Phys. 160 (2021), 103975, 14 pp. https://doi.org/10.1016/j.geomphys.2020.103975
- A. Martinez and J. D. Perez, Real hypersurfaces in quaternionic projective space, Ann. Mat. Pura Appl. (4) 145 (1986), 355-384. https://doi.org/10.1007/BF01790548
- J. D. Perez, Cyclic-parallel real hypersurfaces of quaternionic projective space, Tsukuba J. Math. 17 (1993), no. 1, 189-191. https://doi.org/10.21099/tkbjm/1496162139
- J. D. Perez, Comparing Lie derivatives on real hypersurfaces in complex projective spaces, Mediterr. J. Math. 13 (2016), no. 4, 2161-2169. https://doi.org/10.1007/s00009-015-0601-8
- J. D. Perez and Y. J. Suh, Real hypersurfaces of quaternionic projective space satisfying ∇UiR = 0, Differential Geom. Appl. 7 (1997), no. 3, 211-217. https://doi.org/10.1016/S0926-2245(97)00003-X
- J. D. Perez and Y. J. Suh, The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians, J. Korean Math. Soc. 44 (2007), no. 1, 211-235. https://doi.org/10.4134/JKMS.2007.44.1.211
- J. D. Perez, Y. J. Suh, and Y. Watanabe, Generalized Einstein real hypersurfaces in complex two-plane Grassmannians, J. Geom. Phys. 60 (2010), no. 11, 1806-1818. https://doi.org/10.1016/j.geomphys.2010.06.017
- U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z. 245 (2003), no. 3, 503-527. https://doi.org/10.1007/s00209-003-0549-4
- Y. J. Suh, Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians, Adv. in Appl. Math. 50 (2013), no. 4, 645-659. https://doi.org/10.1016/j.aam.2013.01.001
- Y. J. Suh, Real hypersurfaces in complex hyperbolic two-plane Grassmannians with Reeb vector field, Adv. in Appl. Math. 55 (2014), 131-145. https://doi.org/10.1016/j.aam.2014.01.005
- Y. J. Suh, Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting Ricci tensor, Internat. J. Math. 26 (2015), no. 1, 1550008, 26 pp. https://doi.org/10.1142/S0129167X15500081
- Y. J. Suh, Generalized Killing Ricci tensor for real hypersurfaces in complex two-plane Grassmannians, J. Geom. Phys. 159 (2021), 103799, 15 pp. https://doi.org/10.1016/j.geomphys.2020.103799
- Y. J. Suh, Generalized Killing-Ricci tensor for real hypersurfaces in complex hyperbolic two-plane Grassmannians, Mediterr. J. Math. 18 (2021), no. 3, Paper No. 88, 28 pp. https://doi.org/10.1007/s00009-021-01724-6
- Y. J. Suh and C. Woo, Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor, Math. Nachr. 287 (2014), no. 13, 1524-1529. https://doi.org/10.1002/mana.201300283
- G. Thompson, Killing tensors in spaces of constant curvature, J. Math. Phys. 27 (1986), no. 11, 2693-2699. https://doi.org/10.1063/1.527288
- K. Yano, On harmonic and Killing vector fields, Ann. of Math. (2) 55 (1952), 38-45. https://doi.org/10.2307/1969418
- K. Yano, Harmonic and Killing tensor fields in Riemannian spaces with boundary, J. Math. Soc. Japan 10 (1958), 430-437. https://doi.org/10.2969/jmsj/01040430
- K. Yano, Harmonic and Killing vector fields in compact orientable Riemannian spaces with boundary, Ann. of Math. (2) 69 (1959), 588-597. https://doi.org/10.2307/1970024