DOI QR코드

DOI QR Code

Phytocompounds from T. conoides identified for targeting JNK2 protein in breast cancer

  • Sruthy, Sathish (Computational Biology Laboratory, Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar) ;
  • Thirumurthy, Madhavan (Computational Biology Laboratory, Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar)
  • Received : 2022.11.22
  • Accepted : 2022.12.12
  • Published : 2022.12.30

Abstract

c-Jun N-terminal kinases (JNKs) are members of MAPK family. Many genes can relay signals that promote inflammation, cell proliferation, or cell death which causes several diseases have been associated to mutations in the JNK gene family. The JNK2 gene is significantly more important in cancer development than the JNK1 and JNK3 genes. There are several different ways in which JNK2 contributes to breast cancer, and one of these is through its role in cell migration. As a result, this study's primary objective was to employ computational strategies to identify promising leads that potentially target the JNK2 protein in a strategy to alleviate breast cancer. We have derived these anticancer compounds from marine brown seaweed called Turbinaria conoides. We have identified compounds Ethane, 1, 1-diethoxy- and Butane, 2-ethoxy as promising anti-cancer drugs by molecular docking, DFT, and ADME study.

Keywords

References

  1. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell;103(2):239-52, 2000. https://doi.org/10.1016/S0092-8674(00)00116-1
  2. Manning AM, Davis RJ. Targeting JNK for therapeutic benefit: From junk to gold? Nat Rev Drug Discov;2(7):554-65., 2003. https://doi.org/10.1038/nrd1132
  3. Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B, et al. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO;15(11):2760-70, 1996. https://doi.org/10.1002/j.1460-2075.1996.tb00636.x
  4. Bogoyevitch MA, Ngoei KRW, Zhao TT, Yeap YYC, Ng DCH. c-Jun N-terminal kinase (JNK) signaling: Recent advances and challenges. Biochim Biophys Acta - Proteins Proteomics [Internet] 2010;1804(3):463-75. Available from: http://dx.doi.org/10.1016/j.bbapap.11. 002,2009.
  5. Kennedy NJ, Davis RJ. Role of JNK in tumor development. Cell Cycle;2(3):199-201, 2003.
  6. Shibata W, Maeda S, Hikiba Y, Yanai A, Sakamoto K, Nakagawa H, et al. c-Jun NH2-terminal kinase 1 is a critical regulator for the development of gastric cancer in mice. Cancer Res;68(13):5031-9, 2008. https://doi.org/10.1158/0008-5472.CAN-07-6332
  7. Antonyak MA, Kenyon LC, Godwin AK, James DC, Emlet DR, Okamoto I, et al. Elevated JNK activation contributes to the pathogenesis of human brain tumors. Oncogene;21(33):5038-46, 2002. https://doi.org/10.1038/sj.onc.1205593
  8. Di R, Huang MT, Ho CT. Anti-inflammatory activities of mogrosides from Momordica grosvenori in murine macrophages and a murine ear edema model. J Agric Food Chem;59(13):7474-81, 2011. https://doi.org/10.1021/jf201207m
  9. Mitra S, Lee JS, Cantrell M, Van Den Berg CL. C-Jun N-terminal kinase 2 (JNK2) enhances cell migration through epidermal growth factor substrate 8 (EPS8). J Biol Chem;286(17):15287-97, 2011. https://doi.org/10.1074/jbc.M109.094441
  10. Kaoud TS, Mitra S, Lee S, Taliaferro J, Cantrell M, Linse KD, et al. Development of JNK2-selective peptide inhibitors that inhibit breast cancer cell migration. ACS Chem Biol;6(6):658-66, 2011. https://doi.org/10.1021/cb200017n
  11. Kulkarni SA, Krishnan SBB, Chandrasekhar B, Banerjee K, Sohn H, Madhavan T. Characterization of Phytochemicals in Ulva intestinalis L. and Their Action Against SARS-CoV-2 Spike Glycoprotein Receptor-Binding Domain. Front Chem;9(January 2020):1-16, 2021.
  12. Yadalam PK, Varatharajan K, Rajapandian K, Chopra P, Arumuganainar D, Nagarathnam T, et al. Antiviral Essential Oil Components Against SARS-CoV-2 in Pre-procedural Mouth Rinses for Dental Settings During COVID-19: A Computational Study. Front Chem;9(March):1-11, 2021.
  13. Kulkarni SA, Nagarajan SK, Ramesh V, Palaniyandi V, Selvam SP, Madhavan T. Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein. J Mol Struct;1221, 2020.
  14. Jordaan MA, Ebenezer O, Damoyi N, Shapi M. Virtual screening, molecular docking studies and DFT calculations of FDA approved compounds similar to the non-nucleoside reverse transcriptase inhibitor (NNRTI) efavirenz. Heliyon;6(8): e04642, 2020.