DOI QR코드

DOI QR Code

Material Model for Tensile Behavior of Lathe Scrap Reinforced Mortar

선반 스크랩 보강 모르타르의 인장거동에 대한 재료모델

  • Hyun-Jin, Lee (Business department, JY Construction) ;
  • Su-Ho, Bae (Department of Civil Engineering, Andong National University) ;
  • Soon-Oh, Kwon (Diagnosis Team, Sean Safety Industry)
  • Received : 2022.11.08
  • Accepted : 2022.12.19
  • Published : 2022.12.30

Abstract

When fiber reinforced concrete is manufactured, it is useful to utilize lathe scrap as an aiternative material of steel fiber, because it is not only economical as an by-product of steel manufactures, but also has a very similar composition to that of steel fiber. The purpose of this experimental research is to evaluate the compressive strength and tensile behavior and then propose a material model of lathe scrap reinforced mortar. For this purpose, the lathe scrap reinforced mortars were ma de a ccording to their tota l volume fra ction of 1.5 % for wa ter-binder ra tio of 30 % a nd 40 %, respectively, a nd then the mechanical properties such as compressive strength, direct tensile strength, and stress-strain curve of those were evaluated. Also, based on the experimental results of lathe scrap reinforced mortar the material model for tensile behavior was suggested. It was revealed that the experimental results and the proposed material model corresponded relatively well.

섬유보강 콘크리트 제조 시 감섬유 대체재료로서 선반 스크랩을 활용하는 것이 효과적이다. 왜냐하면, 선반 스크랩은 철강 제품의 부산물로서 경제적일 뿐만 아니라 강섬유의 조성과 매우 유사하기 때문이다. 본 연구의 목적은 선반 스크랩 보강 모르타르의 압축강도 및 인장거동을 평가한 후 인장거동에 대한 재료모델을 제안하는 것이다. 이를 위하여 물-결합재비 30 % 및 40 %에 각각에 대하여 선반 스크랩을 총 부피비의 1.5 %를 혼입한 선반 스크랩 보강 모르타르를 제작한 후 압축강도 및 인장거동 등의 역학적 특성을 평가하였다. 또한 선반 스크랩 보강 모르타르의 실험 결과를 바탕으로 인장거동에 대한 재료모델을 제안하였으며, 제안한 모델은 실험 결과와 비교적 잘 일치하는 것으로 나타났다.

Keywords

Acknowledgement

이 논문은 안동대학교 기본연구지원사업에 의하여 연구되었으며, 이에 감사드립니다.

References

  1. Choi, Y.W., Oh, S.R., Choi, B.K. (2016). An experimental study on fundamental quality properties of basalt fiber reinforced mortar according to application of high volume fly ash, Journal of the Korea Concrete Institute, 28(4), 387-394 [In Korean]. https://doi.org/10.4334/JKCI.2016.28.4.387
  2. Grelat, A. (1978). Nonlinear Analysis of Hyperstatic Reinforced Concrete Frames, Ph.D Thesis, University Paris VI.
  3. Gu, D.O., Kim, S.D., Kim, H.S., Choi, K.K. (2014). Flexural performance characteristics of amorphous steel fiber-reinforced concrete, Journal of the Korea Concrete Institute, 26(4), 483-489 [In Korean]. https://doi.org/10.4334/JKCI.2014.26.4.483
  4. Jeng, C.H., Hsu, T.T. (2009). A softened membrane model for torsion in reinforced concrete members, Engineering Structures, 31(9), 1944-1954. https://doi.org/10.1016/j.engstruct.2009.02.038
  5. Jofriet, J.C., McNeice, G.M. (1971). Finite element analysis of reinforced concrete slabs, ASCE Journal of the Structural Division, 97(3), 785-806,
  6. Kim, S.Y. (2014). Mechanical Properties of Hybrid Fiber Reinforced Ultra-High Strength Concrete, Master's Thesis, Department of Architectural Engineering Graduate School, Dankook University [In Korean].
  7. KS D 2101 (2020). Classification Standard for Iron and Steel Scraps, KS Standard, Korea [in Korean].
  8. KS F 2403 (2014). Standard Test Method for Making and Curing Concrete Specimens, KS Standard, Korea [in Korean].
  9. KS F 2405 (2010). Standard Test Method for Compressive Strength of Concrete, KS Standard, Korea [in Korean].
  10. KS L 5105 (2012). Testing Method for Compressive Strength of Hydraulic Cement Mortar, KS Standard, Korea [in Korean].
  11. Kwon, S.O., Bae, S.H., Kim, J.W., Lee, H.J., Kim, S.W. (2017). Direct tensile strength and flexural performance of lathe scrap reinforced cementitious composites, Journal of the Korea Concrete Institute, 29(6), 555-562 [in Korean].
  12. Kwon, S.O., Bae, S.H., Lee, H.J., Kim, S.W., Park, J.J. (2015). Influence of measurements of lathe scrap on the characterisrics of fiber reinforced cementitious composite, Korea Society for Advanced Composite Structures, 6(2), 70-76 [in Korean]. https://doi.org/10.11004/kosacs.2015.6.2.070
  13. Mondal, T.G., Prakash, S.S. (2015). Effect of tension stiffening on the behaviour of reinforced concrete circular columns under torsion, Engineering Structures, 92, 186-195. https://doi.org/10.1016/j.engstruct.2015.03.018
  14. Murali, G., Vardhan, C.V., Prabu, R., Khan, Z.M.S.A., Mohamed, T.A., Suresh, T. (2012). Experimental investigation on fiber reinforced concrete using waste materials, International Journal of Engineering Research and Applications, 2(2), 278-283.
  15. Nam, Y.H., Park, W.S., Jang, Y.I., Yun, H.D., Kim, S.W. (2017). Effect of recycled fine aggregate and fly ash on the mechanical properties of PVA fiber-reinforced cement composite, Journal of the Korea Concrete Institute, 29(2), 149-157 [In Korean]. https://doi.org/10.4334/JKCI.2017.29.2.149
  16. Parente, J.E., Nogueira, G.V., Meireles, N.M., Moreira, L.S. (2014). Material and geometric nonlinear analysis of reinforced concrete frames, Revista IBRACON de Estruturas e Materiais, 7(5), 879-904. https://doi.org/10.1590/S1983-41952014000500009
  17. Reinhardt, H.W. (1984). Fracture mechanics of an elastic softening material like concrete, HERON, 29(2), 1-37.
  18. Scott, B.D., Park, R., Priestley, M.J.N. (1982). Stress-strain behavior of concrete confined overlapping hoops at low and high strain rates, Journal of ACI, 79(1), 13-27.
  19. Vijayakumar, G., Senthilnathan, P., Pandurangan, K., Ramakrishna, G. (2012). Impact and energy absorption characteristics of lathe scrap reinforced concrete, International Journal of Structural and Civil Engineering Research, 1(1), 60-66.
  20. Won, J.P., Hwang, K.S., Park, C.G. (2005). Mechanical and early shrinkage crack of hydrophilic PVA fiber reinforced concrete with fiber volume fraction and fiber length, KSCE Journal of Civil and Environmental Engineering Research, 25(1A), 133-142 [in Korean].
  21. Yang, G.H. (2010). Slum and mechanical properties of hybrid steel-PVA fiber reinforced concrete, Journal of the Korea Concrete Institute, 22(5), 651-658 [In Korean].
  22. Yang, K.H., Oh, S.J. (2008). Effect of volume fraction and length of fiber on the mechanical properties of fiber reinforced concrete, Journal of The Korea Institute of Building Construction, 8(1), 43-48 [in Korean]. https://doi.org/10.5345/JKIC.2008.8.1.043
  23. Yoon, E.S., Park, S.B. (2006). An experimental study on the mechanical properties and long-term deformations of high-strength steel fiber reinforced concrete, KSCE Journal of Civil and Environmental Engineering Research, 26(2A), 401-409 [in Korean].