DOI QR코드

DOI QR Code

First-Principle Calculation Study of Cu Adsorption on X-doped (X=Ru, P, Si) 𝛾-Al2O3

X-doped (X=Ru, P, Si) 𝛾-Al2O3 상의 Cu 흡착 제일원리 계산 연구

  • Received : 2021.12.30
  • Accepted : 2022.02.04
  • Published : 2022.02.28

Abstract

Copper (Cu)-based catalysts have been widely used in a methanol steam reforming (MSR) reaction for hydrogen production for air-independent propulsion (AIP) applications and their good catalytic activities have attracted much attention. However, the agglomeration of the catalytic active site Cu causes deteriorating the catalytic performance and suppression of Cu agglomeration is a crucial issue in the AIP applications that the MSR system is typically operated at 250-300℃ for a long time. R. Sakai et al. recently showed a computational study on the anchoring effect that reduces an agglomeration of active sites by doping in a supporter. In order to present the anchoring effect on 𝛾-Al2O3 supported Cu-based catalysts, in this study, the adsorption energies of Cu on X-doped (X=ruthenium, phosphorus, silicon) 𝛾-Al2O3 were calculated and Cu adsorption energy decreased due to a change of the electronic structure originated from doping, thereby proving the anchoring effect.

Keywords

Acknowledgement

본 연구는 국방연구개발사업의 일환으로 국방과학연구소에서 수행하는 기초연구(극환경 전원 고기능화 특화연구실)예산으로 수행되었다.

References

  1. J. H. Lee, "A study of the characteristics of Ni/Ce0.9Gd0.1O2-x and Cu/Ce0.9Gd0.1O2-x catalysts for methanol steam reforming synthesized by solution combustion process", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 3, 2019, pp. 209-219, doi: https://doi.org/10.7316/KHNES.2019.30.3.209.
  2. R. Sakai, K. Murakami, Y. Mizutani, Y. Tanaka, S. Hayashi, A. Ishikawa, T. Higo, S. Ogo, H. Tsuneki, H. Nakai, and Y. Sekine, "Agglomeration suppression of a Fe-supported catalyst and its utilization for low-temperature ammonia synthesis in an electric field", ACS Omega, Vol. 5, No, 12, 2020, pp. 6846-6851, doi: https://doi.org/10.1021/acsomega.0c00170.
  3. D. Mukai, S. Tochiya, Y. Murai, M. Imori, T. Hashimoto, Y. Sugiura, and Y. Sekine, "Role of support lattice oxygen on steam reforming of toluene for hydrogen production over Ni/La0.7Sr0.3AlO3-δ catalyst", Appl. Catal., A, Vol. 453, 2013, pp. 60-70, doi: https://doi.org/10.1016/j.apcata.2012.11.040.
  4. Y. Sekine, D. Mukai, Y. Murai, S. Tochiya, Y. Izutsu, K. Sekiguchi, N. Hosomura, H. Arai, E. Kikuchi, and Y. Sugiura, "Steam reforming of toluene over perovskite-supported Ni catalysts", Appl. Catal., A, Vol. 451, 2013, pp. 160-167, doi: https://doi.org/10.1016/j.apcata.2012.11.005.
  5. Y. Sugiura, S. Mukai, Y. Murai, S. Tochiya, and Y. Sekine, "Oxidation resistance of Ni/La0.7Sr0.3AlO3-δ catalyst for steam reforming of model aromatic hydrocarbon", Int. J. Hydrogen Energy, Vol. 38, No. 19, 2013, pp. 7822-7829, doi: https://doi.org/10.1016/j.ijhydene.2013.04.095.
  6. K. Takise, S. Manabe, K. Muraguchi, T. Higo, S. Ogo, and Y. Sekine, "Anchoring effect and oxygen redox property of Co/La0.7Sr0.3AlO3-δ perovskite catalyst on toluene steam reforming reaction", Appl. Catal., A, Vol. 538, 2017, pp. 181-189, doi: https://doi.org/10.1016/j.apcata.2017.03.026.
  7. K. Nishida, I. Atake, D. Li, T. Shishido, Y. Oumi, T. Sano, and K. Takehira, "Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water-gas shift reaction Catalyst preparation by adopting ''memory effect'' of hydrotalcite", Appl. Catal. A: General, Vol. 337, No. 1, 2008, pp. 48-57, doi: https://doi.org/10.1016/j.apcata.2007.11.036.
  8. A. Kadari, K. Mahi, L. O. Faria, B. Saoula, and B. Adila, "Study of the physical properties of amorphous Zr doped Al2O3 powders", Chin. J. Phys., Vol. 55, No. 1, 2017, pp. 127-132, doi: https://doi.org/10.1016/j.cjph.2016.10.012.
  9. D. Sarkar, D. Mohapatra, S. Ray, S. Bhattacharyya, S. Adak, and N. Mitra, "Synthesis and characterization of sol-gel derived ZrO2 doped Al2O3 nanopowder", Ceram. Int., Vol. 33, No. 7, 2007, pp. 1275-1282, doi: https://doi.org/10.1016/j.ceramint.2006.05.002.
  10. M. Acikgoz, M. R. Khoshi, J. Harrell, A. Genova, R. Chawla, H. He, and M. Pavanello, "Tuning the electronic properties of the γ-Al2O3 surface by phosphorus doping", Phys. Chem. Chem. Phys., Vol. 27, 2019, pp. 15080-15088, doi: https://doi.org/10.1039/c9cp03105g.
  11. L. Ao, Y.G. Yuan, Y. Tian, J. L. Nie, H. Y. Xiao, H. Chen, X. Xiang, and X. T. Zu, "Electronic and magnetic properties of C-doped α-Al2O3 by DFT calculations", Comput. Mater. Sci., Vol. 110, 2015, pp. 368-374, doi: https://doi.org/10.1016/j.commatsci.2015.08.021.
  12. J. Hun Kwak, L. Kovarik, and J. Szanyi, "CO2 Reduction on supported Ru/Al2O3 catalysts: cluster size dependence of product selectivity", ACS Catal., Vol. 3, No. 11, 2013, pp. 2449-2455, doi: https://doi.org/10.1021/cs400381f.
  13. F. Hu, X. Wu, Y. Wang, and X. Lai, "Ultrathin γ-Al2O3 nanofibers with large specific surface area and their enhanced thermal stability by Si-doping", RSC Adv., Vol. 67, 2015, pp. 54053-54058, doi: https://doi.org/10.1039/c5ra08315j.
  14. W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects", Phys. Rev., Vol. 140, No. 4A, 1965, pp. A1133, doi: https://doi.org/10.1103/PhysRev.140.A1133.
  15. Richard M. Martin, "Electronic structure: basic theory and practical methods", Cambridge University Press, 2004, doi: https://doi.org/10.1017/CBO9780511805769.
  16. H. M. Jang, "Density functional theory and the applications to ferroelectric and multiferroic study", Ceramist, Vol. 18, No. 1, 2015, pp.26-43, Retrieved from https://www.koreascience.or.kr/article/JAKO201517052511225.view?orgId=anpor&hide=breadcrumb,journalinfo.
  17. M. Digne, P. Sautet, P. Raybaud, P. Euzen, and H. Toulhoat, "Hydroxyl groups on γ-alumina surfaces: a DFT study", J. Catal. Vol. 211, No. 1, 2002, pp. 1-5, doi: https://doi.org/10.1006/jcat.2002.3741.
  18. M. C. Valero, P. Raybaud, and P. Sautet, "Interplay between molecular adsorption and metal-support interaction for small supported metal clusters: CO and C2H4 adsorption on Pd4/γ-Al2O3", J. Catal. Vol. 247, No. 2, 2007, pp. 339-355, doi: https://doi.org/10.1016/j.jcat.2007.02.014.
  19. X. Shi, Y. Zhang, S. Zong, W. Gu, P. Ma, and N. Lu, "Interaction of ethylene with Irn (n = 1-10):from bare clusters to γ-Al2O3-supported nanoparticles", Nanomat., Vol. 9, No. 3, 2019, pp. 331, doi: https://doi.org/10.3390/nano9030331.
  20. M. Digne, P. Sautet, P. Raybaud, P. Euzenc, and H. Toulhoat, "Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces", J. Catal. Vol. 226, No. 15, 2004, pp. 54-68, doi: https://doi.org/10.1016/j.jcat.2004.04.020.
  21. J. Li, R. Zhang and B. Wang, "Influence of the hydroxylation of γ-Al2O3 surfaces on the stability and growth of Cu for Cu/γ-Al2O3 catalyst: A DFT study", Appl. Surf. Sci., Vol. 270, 2013, pp. 728-736, doi: https://doi.org/10.1016/j.apsusc.2013.01.139.
  22. G. Paglia, A. L. Rohl, C. E. Buckley, and J. D. Gale, "Determination of the structure of γ-alumina from interatomic potential and first-principles calculations: the requirement of significant numbers of nonspinel positions to achieve an accurate structural model", Phys. Rev. B, Vol. 71, No. 22, 2005, pp. 224115, doi: https://doi.org/10.1103/PhysRevB.71.224115.
  23. J. Gu, J. Wang, and J. Leszczynski, "Structure and energetics of (111) surface of γ-Al2O3: insights from DFT including periodic boundary approach", ACS Omega, Vol. 3, No. 2, 2018, pp. 1881-1888, doi: https://doi.org/10.1021/acsomega.7b01921.
  24. K. Ding, B. Chen, Z. Fang, Y. Zhang, and Z. Chen, "Why the photocatalytic activity of Mo-doped BiVO4 is enhanced: a comprehensive density functional study", Phys. Chem. Chem. Phys., Vol. 16, 2014, pp. 13465-13476, doi: https://doi.org/10.1039/c4cp01350f.