DOI QR코드

DOI QR Code

Effect of Silicotungstic Acid as Inorganic Filler on the Properties of Anion Exchange Composite Membranes

무기첨가제 규소텅스텐산이 음이온교환 복합막 특성에 미치는 영향

  • LEE, KYU HA (Department of Life Sciences, College of Natural Science, Jeonbuk National University) ;
  • YOO, DONG JIN (Department of Life Sciences, College of Natural Science, Jeonbuk National University)
  • 이규하 (전북대학교 자연과학대학 생명과학과) ;
  • 유동진 (전북대학교 자연과학대학 생명과학과)
  • Received : 2022.01.05
  • Accepted : 2022.02.07
  • Published : 2022.02.28

Abstract

In this study, we synthesized a poly(pheneylene oxide) (PPO)-based organic/inorganic composite membrane having silicotungstic acid (STA) for the development of an anion exchange membrane with excellent ionic conductivity and physicochemical stability. The organic/inorganic composite membranes were prepared by introducing different STA contents (0 wt%, 10 wt%, 30 wt%, and 50 wt%) into the quaternizaed(Q)-PPO matrix. The prepared anion exchange membranes were subjected to structural analysis by proton neclear magnetic resonance and Fourier transform infrared, and thermal behavior of membranes was confirmed by thermogravimetric analysis. Among the prepared composite membranes, the ion conductivity of Q-PPO/STA-50 (40.5 mS cm-1) showed 1.46 times compared to that of the pristine membrane (27.6 mS cm-1). Therefore, these results demonstrated that organic/inorganic composite membranes are promising candidates for application of anion exchange membranes.

Keywords

Acknowledgement

이 성과는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2020R1A2B5B01001458). 본 연구는 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입니다(NRF-2021R1I1A1A01044962).

References

  1. M. A. Abdelkareem, K. Elsaid, T. Wilberforce, M. Kamil, E. T. Sayed, and A. Olabi, "Environmental aspects of fuel cells: a review", Sci. Total Environ., Vol. 752, 2021, pp. 141803, doi: https://doi.org/10.1016/j.scitotenv.2020.141803.
  2. C. Li and J. B. Baek, "The promise of hydrogen production from alkaline anion exchange membrane electrolyzers", Nano Energy, Vol. 87, 2021, pp. 106162, doi: https://doi.org/10.1016/j.nanoen.2021.106162.
  3. N. Chen and Y. M. Lee, "Anion exchange polyelectrolytes for membranes and ionomers", Prog. Polym. Sci., Vol. 113, 2020, pp. 101345, doi: https://doi.org/10.1016/j.progpolymsci.2020.101345.
  4. L. Lu, G. Dai, J. Lee, and H. G. Lee, "Effect of the mixture ratio of Ni-Pt nanocatalysts on water electrolysis characteristics in AEM system", Trans. Korean Hydrogen New Energy Soc., Vol. 32, No. 5, 2021, pp. 285-292, doi: https://doi.org/10.7316/KHNES.2021.32.5.285.
  5. K Tammeveski and J. H. Zagal, "Electrocatalytic oxygen reduction on transition metal macrocyclic complexes for anion exchange membrane fuel cell application", Curr. Opin. Electrochem., Vol. 9, 2018, pp. 207-213, doi: https://doi.org/10.1016/j.coelec.2018.04.001.
  6. S. Y. Lee and D. J. Yoo, "Comparison of properties of two kinds of anion exchange membranes with different functional group for alkaline fuel cells", Trans. Korean Hydrogen New Energy Soc., Vol. 29, No. 5, 2018, pp. 458-465, doi: https://doi.org/10.7316/KHNES.2018.29.5.458.
  7. S. H. Kim, K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Enhanced hydroxide conductivity and dimensional stability with blended membranes containing hyperbranched PAES/linear PPO as anion exchange membranes", Polymers, Vol. 12, No. 12, 2020, pp. 3011, doi: https://doi.org/10.3390/polym12123011.
  8. A. K. Mohanty, Y. E. Song, B. Jung, J. R. Kim, N. Kim, and H. J. Paik, "Partially crosslinked comb-shaped PPO-based anion exchange membrane grafted with long alkyl chains: synthesis, characterization and microbial fuel cell performance", Int. J. Hydrog. Energy, Vol. 45, No. 51, 2020, pp. 27346-27358, doi: https://doi.org/10.1016/j.ijhydene.2020.07.093.
  9. Y. Li, J. Sniekers, J. C . M alaquias, C . V. G oethem , K. Binnemans, J. Fransaer, and I. F. J. Vankelecom, "Crosslinked anion exchange membranes prepared from poly(phenylene oxide) (PPO) for non-aqueous redox flow batteries", J. Power Sources, Vol. 378, 2018, pp. 338-344, doi: https://doi.org/10.1016/j.jpowsour.2017.12.049.
  10. Q. Chen, J. Luo, J. Liao, C. Zhu, J. Li, J. Xu, Y. Xu, H, Ruan, and J. Shen, "Tuning the length of aliphatic chain segments in aromatic poly(arylene ether sulfone) to tailor the micro-structure of anion-exchange membrane for improved proton blocking performance", J. Membr. Sci., Vol. 641, 2022, pp. 119860, doi: https://doi.org/10.1016/j.memsci.2021.119860.
  11. J. E. Park, J. Kim, J. Han, K. Kim, S. Park, S. Kim, H. S. Park, Y. H. Cho, J. C. Lee, and Y. E. Sung, "High-performance proton-exchange membrane water electrolysis using a sulfonated poly(arylene ether sulfone) membrane and ionomer", J. Membr. Sci., Vol. 620, 2021, pp. 118871, doi: https://doi.org/10.1016/j.memsci.2020.118871.
  12. C. Vogel and J. M. Haack, "Preparation of ion-exchange materials and membranes", Desalination, Vol. 342, 2014, pp. 156-174, doi: https://doi.org/10.1016/j.desal.2013.12.039.
  13. Z. Li, R. Yu, C. Liu, J. Zheng, J. Guo, T. A. Sherazi, S. Li, and S. Zhang, "Preparation and characterization of side-chain poly(aryl ether ketone) anion exchange membranes by superacid-catalyzed reaction", Polymer, Vol. 222, 2021, pp. 123639, doi: https://doi.org/10.1016/j.polymer.2021.123639.
  14. R. -A. Becerra-Arciniegas, R. Narducci, G. Erocolani, S. Antonaroli, E. Sgreccia, L. Pasquini, P. Knauh, and M. L. Di Yona, "Alkaline stability of model anion exchange membranes based on poly(phenylene oxide) (PPO) with grafted quaternary ammoium groups: Influence of the functionalized route", Polymer, Vol. 185, 2019, pp. 121931, doi: https://doi.org/10.1016/j.polymer.2019.121931.
  15. K. H. Lee, J. Y. Chu, A. R. Kim, H. G. Kim, and D. J. Yoo, "Functionalized TiO2 mediated organic-inorganic composite membranes based on quaternized poly(arylene ether ketone) with enhanced ionic conductivity and alkaline stability for alkaline fuel cells", J. Membr. Sci., Vol. 634, 2021, pp. 119435, doi: https://doi.org/10.1016/j.memsci.2021.119435.
  16. K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Fabrication of high-alkaline stable quaternized poly(arylene ether ketone)/graphene oxide derivative including zwitterion for alkaline fuel cells", ACS Sustain. Chem. Eng., Vol. 9, No. 26, 2021, pp. 8824-8834, doi: https://doi.org/10.1021/acssuschemeng.1c01978.
  17. Y. Lu, X. Pan, N. Li, Z. Hu, and S. Chen, "Improved performance of quaternized poly(arylene ehter ketone)s/graphitic carbon nitride nanosheets composite anion exchange membrane for fuel cell applications", Appl. Surf. Sci., Vol. 503, 2020, pp. 144071, doi: https://doi.org/10.1016/j.apsusc.2019.144071.
  18. J. Li, S. Wang, F. Liu, H. Chen, X. Wang, T. Mao, D. Wang, G. Liu, and Z. Wang, "Flame-retardant AEMs based on organic-inorganic composite polybenzimidazole membranes with enhanced hydroxide conductivity", J. Membr. Sci., Vol. 591, 2019, pp. 117306, doi: https://doi.org/10.1016/j.memsci.2019.117306.
  19. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide", J. Membr. Sci., Vol. 611, 2020, pp. 118385, doi: https://doi.org/10.1016/j.memsci.2020.118385.
  20. J, Chen, M. Guan, K. Li, and S. Tang, "High-performance COF-based composite anion exchange membrane sandwiched by GO layers for alkaline H2/O2 fuel cell application", J. Ind. Eng. Chem., Vol. 104, 2021, pp. 136-145, doi: https://doi.org/10.1016/j.jiec.2021.08.016.
  21. K. H. Lee, J. Y. Chu, A. R. Kim, K. S. Nahm, C. J. Kim, and D. J. Yoo, "Densely sulfonated block copolymer composite membranes containing phosphotungstic acid for fuel cell membranes", J. Membr. Sci., Vol. 434, 2013, pp. 35-43, doi: http://dx.doi.org/10.1016/j.memsci.2013.01.037.
  22. Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, J. E. McGrath, "Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications", J. Membr. Sci., Vol. 212, No. 1-2, 2003, pp. 263-282, doi: https://doi.org/10.1016/S0376-7388(02)00507-0.
  23. A. R. Kim, C. J. Park, M. Vinothkannan, and D. J. Yoo. "Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells", Compos. Part B-Eng.. Vol. 155, 2018, pp. 272-281, doi: https://doi.org/10.1016/j.compositesb.2018.08.016.
  24. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Study on the chemical stabilities of poly(arylene ether) random copolymers for alkaline fuel cells: effect of main chain structures with different monomer units", ACS Sustain. Chem. Eng., Vol. 7, No. 24. 2019, pp. 20077-20087, doi: https://doi.org/10.1021/acssuschemeng.9b05934.
  25. L. Wu, T. Xu, and W. Yang, "Fundamental studies of a new series of anion exchange membranes: Membranes prepared through chloroacetylation of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) followed by quaternary amination", J. Membr. Sci., Vol. 286, No. 1-2, 2006, pp. 185-192, doi: https://doi.org/10.1016/j.memsci.2006.09.035.
  26. B. Lee, A. Kodir, H. Lee, D. Shin, and B. Bae, "Preparation and charaterization of the polymeric antioxidant for improving the chemical durability of polymer electrolyte membranes", Trans Korean Hydrogen New Energy Soc., Vol. 32, No. 5, 2021, pp. 308-314, doi: https://doi.org/10.7316/KHNES.2021.32.5.308.
  27. J. Pan, H. Zhu, H. Cao, B. Wang, J Zhao, Z. Sun, and F. Yan, "Flexible cationinc side chains for enhancing the hydroxide ion conductivity of olefinic-type copolymer-based anion exchange membranes: An experimental and theoretical study", J. Membr. Sci., Vol. 620, 2021, pp. 118794, doi: https://doi.org/10.1016/j.memsci.2020.118794.
  28. M. S. Cha, J. Y. Lee, T. Kim, H. Y. Jeong, H. Y. Shin, S. Oh, and Y. T. Hong, "Preparation and charaterization of crosslinked anion exchange membrane (AEM) materials with poly (phenylene ether)-based short hydrophilic block for use in electrochemical applications", J. Membr. Sci., Vol. 530, 2017, pp. 73-83, doi: https://doi.org/10.1016/j.memsci.2017.02.015.
  29. K. Zhang, S. Gong, B. Zhao, Y. Liu, N, Qaisrani, L, Li, F. Zhang, and G. He, "Bent-twisted block copolymer anion exchange membrae with improved conductivity", J. Membr. Sci., Vol. 550, 2018, pp. 59-71, doi: https://doi.org/10.1016/j.memsci.2017.12.044.
  30. K. Shen, Z. Zhang, H. Zhang, J. Pang, and Z. Jiang, "Poly (arylene ehter ketone) carrying hyperquaternized pendants: preparation, stability and conductivity", J. Power Sources, Vol. 287, 2015, pp. 439-447, doi: https://doi.org/10.1016/j.jpowsour.2015.04.017.
  31. Y. Hu, B. Wang, X. Li, D. Chen, and W. Zhang, "Densely quaternized poly(arylene ehter)s with distinct phase separation for highly anion-conductive membranes", J. Power Sources, Vol. 387, 2018, pp. 33-42, doi: https://doi.org/10.1016/j.jpowsour.2018.03.060.
  32. P. Deivanayagam, A. R. Ramamoorthy, and S. N. Jaisankar, "Synthesis and charaterization of sulfonated poly(arylene ehter sulfone)/silicotungstic acid composite membranes for fuel cells", Polym. J., Vol. 45, 2013, pp: 166-172, doi: https://doi.org/10.1038/pj.2012.102.
  33. Q. Wang, L. Huang, J. Zheng, Q. Zhang, G. Qin, S. Li, and S. Zhang, "Design, synthesis and characterization of anion exchange membranes containing guanidinium salts with ultrahigh dimensional stability", J. Membr. Sci., Vol. 643, 2022, pp. 120008, doi: https://doi.org/10.1016/j.memsci.2021.120008.
  34. L. Li, J. Wang, M. Hussain, L. Ma, N. A. Qaisrani, S. Ma, L. Bai, X. Yan, X. Deng, G. He, and G. Zhang, "Side-chain manipulation of poly(phenylene oxide) based anion exchange membrane: alkoxyl extender integrated with flexible spacer", J. Membr. Sci., Vol. 624, 2021, pp. 119088, doi: https://doi.org/10.1016/j.memsci.2021.119088.
  35. Q. Liu, Z. Wang, A. Yu, J. Li, H. Shen, H. Wang, K. Yang, and H. Zhang, "A novel anion exchange membrane based on poly(2,6-dimethyl-1,4-phenylene oxide) with excellent alkaline stability for AEMFC", Int. J. Hydrog. Energy, Vol. 46, No. 47, 2021, pp. 24328-24338, doi: https://doi.org/10.1016/j.ijhydene.2021.05.004.
  36. T. Huang, J. Zhang, Y. Pei, X. Liu, J. Xue, H. Jiang, X. Qiu, Y. Yin, H. Wu, Z. Jiang, and M. D. Guiver, "Mechanically robust microporous anion exchange membranes with efficient anion conduction for fuel cells", Chem. Eng. J., Vol. 418, 2021, pp. 129311, doi: https://doi.org/10.1016/j.cej.2021.129311.
  37. C. G. Arges, J. Parrondo, G. Johnson, A. Nadhan, and V. Ramani, "Assessing the influence of different cation chemistries on ionic conductivity and alkaline stability of anion exchange membranes", J. Mater. Chem., Vol. 22, 2012, pp. 3733-3744, doi: https://doi.org/10.1039/C2JM14898F.
  38. R. Hariprasad, M. Vinothkannan, A. R. Kim, and D. J. Yoo, "SPVdF-HFP/SGO nanohybrid proton exchange membrane for the applications of direct methanol fuel cells", J. Dispersion Sci. Technol. Vol. 42, 2019, pp. 33-45, doi: https://doi.org/10.1080/01932691.2019.1660672.
  39. J. Pan, B. Wei, H. Xie, J. Feng, S. Liao, X. Li, and Y. Yu, "Hexyl-modified series-connected bipyridine and DABCO di-cations functionalized anion exchange membranes for electrodialysis desalination", Sep. Purif. Technol., Vol. 265, 2021, pp. 118526, doi: https://doi.org/10.1016/j.seppur.2021.118526.
  40. Z. Feng, P. O. Esteban, G . Gupta, D. A. Fulton, and M. Mamlouk, "Highly conductive partially cross-linked poly(2,6-dimethyl-1,4-phenylene oxide) as anion exchange membrane and ionomer for water electrolysis", Int. J. Hydrog. Energy, Vol. 46, No. 75, 2021, pp. 37137-37151, doi: https://doi.org/10.1016/j.ijhydene.2021.09.014.
  41. Y. Bai, Y. Yuan, L. Miao, and C. Lu, "Functionalized rGO as covalent crossliinkers for constructing chemically stable polysulfone-based anion exchange membranes with enhanced ion conductivity", J. Membr. Sci., Vol. 570-571, 2019, pp. 481-493, doi: https://doi.org/10.1016/j.memsci.2018.10.030.
  42. K. H. Lee, J. Y. Chu, A. R. Kim, K. S. Nahm, and D. J. Yoo, "Highly sulfonated poly(Arylene biphenylsulfone ketone) block copolymers prepared via post-sulfonation for proton conducting electrolyte membranes", Bull. Korean Chem. Soc., Vol. 34, No. 6, 2013, pp. 1763-1770, doi: https://doi.org/10.5012/bkcs.2013.34.6.1763.
  43. M. Kumari, J. C. Douglin, and D. R. Dekel, "Crosslinked quaternary phosphonium-functionalized poly(ether ether ketone) polymer-based anion-exchange membranes", J. Membr. Sci., Vol. 626, 2021, pp. 119167, doi: https://doi.org/10.1016/j.memsci.2021.119167.
  44. G. Peng, C. Zhu, J. Liao, X. Gao, L. Hao, A. Sotto, and J. Shen, "A two-step strategy for the preparation of anion-exchange membranes based on poly(vinylidenefluoride-co-hexafluoropropylene) for electrodialysis desalination", Polymer, Vol. 218, 2021, pp. 123508, doi: https://doi.org/10.1016/j.polymer.2021.123508.
  45. C. Hu, X. Deng, X. Dong, Y. Hong, Q. Zhang, and Q. Liu, "Rigid crosslinkers towards constructing highly-efficient ion transport channels in anion exchange membranes", J. Membr. Sci., , Vol. 619, 2021, pp. 118806, doi: https://doi.org/10.1016/j.memsci.2020.118806.
  46. Z. Liu, L. Bai, S. Miao, C. Li, J. Pan, Y. Jin, D. Chu, X. Chu, and L. Liu, "Structure-property relationship of poly (2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes with pendant sterically crowded quaternary ammoniums", J. Membr. Sci., Vol. 638, 2021, pp. 119693, doi: http://doi.org/10.1016/j.memsci.2021.119693.
  47. Q. Liu, Z. Wang, A. Yu, J. Li, H. Shen, H. Wang, K. Yang, and H Zhang, "A novel anion exchange membrane based on poly(2,6-dimethyl-1,4-phenylene oxide) with excellent alkaline stability for AEMFC", Int. J. Hydrog. Energy, Vol. 46 No. 47, 2021, pp. 24328-24338, doi: http://doi.org/10.1016/j.ijhydene.2021.05.004.
  48. J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6F-BPA and perfluorobiphenylene units", Int. J. Hydrog. Energy, Vol. 38, No. 14, pp. 6268-6274, doi: https://doi.org/10.1016/j.ijhydene.2012.11.144.
  49. A. R. Kim, "Synthesis and charagerization of fluorinated polybenzimidazole proton exchange membranes for fuel cell", Trans. Korean Hydrogen New Energy Soc,, Vol. 28, No. 1, 2017, pp. 24-29, doi: https://doi.org/10.7316/KHNES.2017.28.1.24.
  50. C. Lin, X. Liu, Q. Yang, H. Wu, F. Liu, Q. Zhang, A. Zhu, and Q. Liu, "Hydrophobic side chains to enhance hydroxide conductivity and physicochemical stabilities of side-chin-type polymer AEMs", J. Membr. Sci., Vol. 585, 2019, pp. 90-98, doi: https://doi.org/10.1016/j.memsci.2019.04.066.
  51. B. Liu, Y. Duan, T. Li, J. Li, H . Zhang, and C. Zhao, "Nanostructured anion exchange membranes based on poly (arylene piperidinium) with bis-cation strings for diffusion dialysis in acid recovery", Sep. Purif. Technol., Vol. 282, 2022, pp. 120032, doi: https://doi.org/10.1016/j.seppur.2021.120032.
  52. J. Zhou, J. Chen, A. Ding, Y. Nie, Z. Li, C. Shen, and S. Gao, "Synthesis and properties of novel crosslinking anion exchange membranes based on quaternary poly(fluorene-piperidine)", Colloid Interface Sci. Commun., Vol. 46, 2022, pp. 100584, doi: https://doi.org/10.1016/j.colcom.2022.100584.
  53. Z. Y. Zhu, W. W. Gou, J. H. Chen, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Crosslinked naphthalene-based triblock polymer anion exchange membranes for fuel cells", J. Membr. Sci., Vol. 636, 2021, pp. 119569, doi: https://doi.org/10.1016/j.memsci.2021.119569.
  54. N. Ye, D. Zhang, Y. Yang, R. Wan, X. Peng, S. Chen, Q. Zhan, R. He, "Radical inhibitors assisted alkali-resisting anion exchange membranes based on poly(4-vinylbenzyl chloride-styrene)", Solid State Ion., Vol. 362, 2021, pp. 115582, doi: https://doi.org/10.1016/j.ssi.2021.115582.