DOI QR코드

DOI QR Code

The Effect of Galangin on the Regulation of Vascular Contractility via the Holoenzyme Reactivation Suppressing ROCK/CPI-17 rather than PKC/CPI-17

  • Yoon, Hyuk-Jun (Department of Pharmacology, College of Pharmacy, Daegu Catholic University) ;
  • Jung, Won Pill (Department of Pharmacology, College of Pharmacy, Daegu Catholic University) ;
  • Min, Young Sil (Department of Pharmaceutical Science, Jungwon University) ;
  • Jin, Fanxue (Department of Pharmacology, Kyungpook National University School of Medicine) ;
  • Bang, Joon Seok (College of Pharmacy, Sookmyung Women's University) ;
  • Sohn, Uy Dong (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Je, Hyun Dong (Department of Pharmacology, College of Pharmacy, Daegu Catholic University)
  • Received : 2021.05.03
  • Accepted : 2021.06.18
  • Published : 2022.03.01

Abstract

In this study, we investigated the influence of galangin on vascular contractibility and to determine the mechanism underlying the relaxation. Isometric contractions of denuded aortic muscles were recorded and combined with western blot analysis which was performed to measure the phosphorylation of phosphorylation-dependent inhibitory protein of myosin phosphatase (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) and to evaluate the effect of galangin on the RhoA/ROCK/CPI-17 pathway. Galangin significantly inhibited phorbol ester-, fluoride- and thromboxane mimetic-induced vasoconstrictions regardless of endothelial nitric oxide synthesis, suggesting its direct effect on vascular smooth muscle. Galangin significantly inhibited the fluoride-dependent increase in pMYPT1 and pCPI-17 levels and phorbol 12,13-dibutyrate-dependent increase in pERK1/2 level, suggesting repression of ROCK and MEK activity and subsequent phosphorylation of MYPT1, CPI-17 and ERK1/2. Taken together, these results suggest that galangin-induced relaxation involves myosin phosphatase reactivation and calcium desensitization, which appears to be mediated by CPI-17 dephosphorylation via not PKC but ROCK inactivation.

Keywords

References

  1. Aloud, A. A., Chinnadurai, V., Govindasamy, C., Alsaif, M. A. and AlNumair, K. S. (2018) Galangin, a dietary flavonoid, ameliorates hyperglycaemia and lipid abnormalities in rats with streptozotocin-induced hyperglycaemia. Pharm. Biol. 56, 302-308. https://doi.org/10.1080/13880209.2018.1474931
  2. Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y. and Kaibuchi, K. (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246-20249. https://doi.org/10.1074/jbc.271.34.20246
  3. Ansari, H., Teng, B., Nadeem, A., Roush, K., Martin, K., Schnermann, J. and Mustafa, S. (2009) A1 adenosine receptor-mediated PKC and p42/p44 MAPK signaling in mouse coronary artery smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 297, H1032-H1039. https://doi.org/10.1152/ajpheart.00374.2009
  4. Cao, J., Wang, H., Chen, F., Fang, J., Xu, A., Xi, W., Zhang, S., Wu, G. and Wang, Z. (2016) Galangin inhibits cell invasion by suppressing the epithelial-mesenchymal transition and inducing apoptosis in renal cell carcinoma. Mol. Med. Rep. 13, 4238-4244. https://doi.org/10.3892/mmr.2016.5042
  5. Devadoss, D., Ramar, M. and Chinnasamy, A. (2018) Galangin, a dietary flavonol inhibits tumor initiation during experimental pulmonary tumorigenesis by modulating xenobiotic enzymes and antioxidant status. Arch. Pharm. Res. 41, 265-275. https://doi.org/10.1007/s12272-014-0330-8
  6. Gallet, C., Blaie, S., Levy-Toledano, S. and Habib, A. (2003) Thromboxane-induced ERK phosphorylation in human aortic smooth muscle cells. Adv. Exp. Med. Biol. 525, 71-73. https://doi.org/10.1007/978-1-4419-9194-2_14
  7. Goyal, R., Mittal, A., Chu, N., Shi, L., Zhang, L. and Longo, L. D. (2009) Maturation and the role of PKC-mediated contractility in ovine cerebral arteries. Am. J. Physiol. Heart Circ. Physiol. 297, H2242-H2252. https://doi.org/10.1152/ajpheart.00681.2009
  8. Hedges, J., Oxhorn, B., Carty, M., Adam, L., Yamboliev, I. and Gerthoffer, W. T. (2000) Phosphorylation of caldesmon by Erk MAP kinases in smooth muscle. Am. J. Physiol. Cell Physiol. 278, C718-C726. https://doi.org/10.1152/ajpcell.2000.278.4.c718
  9. Je, H. D. and Sohn, U. D. (2009) Inhibitory effect of genistein on agonist-induced modulation of vascular contractility. Mol. Cells 27, 191-198. https://doi.org/10.1007/s10059-009-0052-9
  10. Jeon, S. B., Jin, F., Kim, J. I., Kim, S. H., Suk, K., Chae, S. C., Jun, J. E., Park, W. H. and Kim, I. K. (2006) A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem. Biophys. Res. Commun. 343, 27-33. https://doi.org/10.1016/j.bbrc.2006.02.120
  11. Johnson, R. P., El-Yazbi, A. F., Takeya, K., Walsh, E. J., Walsh, M. P. and Cole, W. C. (2009) Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J. Physiol. 587, 2537-2553. https://doi.org/10.1113/jphysiol.2008.168252
  12. Kim, H. H., Bae, Y. and Kim, S. H. (2013) Galangin attenuates mast cell-mediated allergic inflammation. Food Chem. Toxicol. 57, 209-216. https://doi.org/10.1016/j.fct.2013.03.015
  13. Kim, J. I., Urban, M., Young, G. D. and Eto, M. (2012) Reciprocal regulation controlling the expression of CPI-17, a specific inhibitor protein for the myosin light chain phosphatase in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 303, C58- C68. https://doi.org/10.1152/ajpcell.00118.2012
  14. Kitazawa, T., Eto, M., Woodsome, T. P. and Brautigan, D. L. (2000) Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J. Biol. Chem. 275, 9897-9900. https://doi.org/10.1074/jbc.275.14.9897
  15. Kuriyama, T., Tokinaga, Y., Tange, K., Kimoto, Y. and Ogawa, K. (2012) Propofol attenuates angiotensin II-induced vasoconstriction by inhibiting Ca2+-dependent and PKC-mediated Ca2+ sensitization mechanisms. J. Anesth. 26, 682-688. https://doi.org/10.1007/s00540-012-1415-5
  16. Liu, Z. and Khalil, R. A. (2018) Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem. Pharmacol. 153, 91-122. https://doi.org/10.1016/j.bcp.2018.02.012
  17. Qi, F., Ogawa, K., Tokinaga, Y., Uematsu, N., Minonishi, T. and Hatano, Y. (2009) Volatile anesthetics inhibit angiotensin II-induced vascular contraction by modulating myosin light chain phosphatase inhibiting protein, CPI-17 and regulatory subunit, MYPT1 phosphorylation. Anesth. Analg. 109, 412-417. https://doi.org/10.1213/ane.0b013e3181ac6d96
  18. Qiao, Y. N., He, W. Q., Chen, C. P., Zhang, C. H., Zhao, W., Wang, P., Zhang, L., Wu, Y. Z., Yang, X., Peng, Y. J., Gao, J. M., Kamm, K. E., Stull, J. T. and Zhu, M. S. (2014) Myosin phosphatase target subunit 1 (MYPT1) regulates the contraction and relaxation of vascular smooth muscle and maintains blood pressure. J. Biol. Chem. 289, 22512-22523. https://doi.org/10.1074/jbc.M113.525444
  19. Ren, K., Zhang, W., Wu, G., Ren, J., Lu, H., Li, Z. and Han, X. (2016) Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells. Biomed. Pharmacother. 84, 1748-1759. https://doi.org/10.1016/j.biopha.2016.10.111
  20. Sakurada, S., Takuwa, N., Sugimoto, N., Wang, Y., Seto, M., Sasaki, Y. and Takuwa, Y. (2003) Ca2+-dependent activation of Rho and Rho kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ. Res. 93, 548-556. https://doi.org/10.1161/01.RES.0000090998.08629.60
  21. Sasahara, T., Okamoto, H., Ohkura, N., Kobe, A. and Yayama, K. (2015) Epidermal growth factor induces Ca2+ sensitization through Rho-kinase-dependent phosphorylation of myosin phosphatase target subunit 1 in vascular smooth muscle. Eur. J. Pharmacol. 762, 89-95. https://doi.org/10.1016/j.ejphar.2015.05.042
  22. Somlyo, A. P. and Somlyo, A. V. (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325-1358. https://doi.org/10.1152/physrev.00023.2003
  23. Tsai, M. H. and Jiang, M. J. (2006) Rho-kinase-mediated regulation of receptor-agonist-stimulated smooth muscle contraction. Pflugers Arch. 453, 223-232. https://doi.org/10.1007/s00424-006-0133-y
  24. Wilson, D. P., Susnjar, M., Kiss, E., Sutherland, C. and Walsh, M. P. (2005) Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem. J. 389, 763-774. https://doi.org/10.1042/BJ20050237
  25. Wooldridge, A. A., MacDonald, J. A., Erdodi, F., Ma, C., Borman, M. A., Hartshorne, D. J. and Haystead, T. A. (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J. Biol. Chem. 279, 34496-34504. https://doi.org/10.1074/jbc.M405957200
  26. Yang, Q., Fujii, W., Kaji, N., Kakuta, S., Kada, K., Kuwahara, M., Tsubone, H., Ozaki, H. and Hori, M. (2018) The essential role of phospho-T38 CPI-17 in the maintenance of physiological blood pressure using genetically modified mice. FASEB J. 32, 2095-2109. https://doi.org/10.1096/fj.201700794r
  27. Zha, W. J., Qian, Y., Shen, Y., Du, Q., Chen, F. F., Wu, Z. Z., Li, X. and Huang, M. (2013) Galangin abrogates ovalbumin-induced airway inflammation via negative regulation of NF-κB. Evid. Based Complement. Alternat. Med. 2013, 767689.
  28. Zhang, H. T., Wu, J., Wen, M., Su, L. J. and Luo, H. (2012) Galangin induces apoptosis in hepatocellular carcinoma cells through the caspase 8/t-Bid mitochondrial pathway. J. Asian Nat. Prod. Res. 14, 626-633. https://doi.org/10.1080/10286020.2012.682152