References
- Aloud, A. A., Chinnadurai, V., Govindasamy, C., Alsaif, M. A. and AlNumair, K. S. (2018) Galangin, a dietary flavonoid, ameliorates hyperglycaemia and lipid abnormalities in rats with streptozotocin-induced hyperglycaemia. Pharm. Biol. 56, 302-308. https://doi.org/10.1080/13880209.2018.1474931
- Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y. and Kaibuchi, K. (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246-20249. https://doi.org/10.1074/jbc.271.34.20246
- Ansari, H., Teng, B., Nadeem, A., Roush, K., Martin, K., Schnermann, J. and Mustafa, S. (2009) A1 adenosine receptor-mediated PKC and p42/p44 MAPK signaling in mouse coronary artery smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 297, H1032-H1039. https://doi.org/10.1152/ajpheart.00374.2009
- Cao, J., Wang, H., Chen, F., Fang, J., Xu, A., Xi, W., Zhang, S., Wu, G. and Wang, Z. (2016) Galangin inhibits cell invasion by suppressing the epithelial-mesenchymal transition and inducing apoptosis in renal cell carcinoma. Mol. Med. Rep. 13, 4238-4244. https://doi.org/10.3892/mmr.2016.5042
- Devadoss, D., Ramar, M. and Chinnasamy, A. (2018) Galangin, a dietary flavonol inhibits tumor initiation during experimental pulmonary tumorigenesis by modulating xenobiotic enzymes and antioxidant status. Arch. Pharm. Res. 41, 265-275. https://doi.org/10.1007/s12272-014-0330-8
- Gallet, C., Blaie, S., Levy-Toledano, S. and Habib, A. (2003) Thromboxane-induced ERK phosphorylation in human aortic smooth muscle cells. Adv. Exp. Med. Biol. 525, 71-73. https://doi.org/10.1007/978-1-4419-9194-2_14
- Goyal, R., Mittal, A., Chu, N., Shi, L., Zhang, L. and Longo, L. D. (2009) Maturation and the role of PKC-mediated contractility in ovine cerebral arteries. Am. J. Physiol. Heart Circ. Physiol. 297, H2242-H2252. https://doi.org/10.1152/ajpheart.00681.2009
- Hedges, J., Oxhorn, B., Carty, M., Adam, L., Yamboliev, I. and Gerthoffer, W. T. (2000) Phosphorylation of caldesmon by Erk MAP kinases in smooth muscle. Am. J. Physiol. Cell Physiol. 278, C718-C726. https://doi.org/10.1152/ajpcell.2000.278.4.c718
- Je, H. D. and Sohn, U. D. (2009) Inhibitory effect of genistein on agonist-induced modulation of vascular contractility. Mol. Cells 27, 191-198. https://doi.org/10.1007/s10059-009-0052-9
- Jeon, S. B., Jin, F., Kim, J. I., Kim, S. H., Suk, K., Chae, S. C., Jun, J. E., Park, W. H. and Kim, I. K. (2006) A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem. Biophys. Res. Commun. 343, 27-33. https://doi.org/10.1016/j.bbrc.2006.02.120
- Johnson, R. P., El-Yazbi, A. F., Takeya, K., Walsh, E. J., Walsh, M. P. and Cole, W. C. (2009) Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J. Physiol. 587, 2537-2553. https://doi.org/10.1113/jphysiol.2008.168252
- Kim, H. H., Bae, Y. and Kim, S. H. (2013) Galangin attenuates mast cell-mediated allergic inflammation. Food Chem. Toxicol. 57, 209-216. https://doi.org/10.1016/j.fct.2013.03.015
- Kim, J. I., Urban, M., Young, G. D. and Eto, M. (2012) Reciprocal regulation controlling the expression of CPI-17, a specific inhibitor protein for the myosin light chain phosphatase in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 303, C58- C68. https://doi.org/10.1152/ajpcell.00118.2012
- Kitazawa, T., Eto, M., Woodsome, T. P. and Brautigan, D. L. (2000) Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J. Biol. Chem. 275, 9897-9900. https://doi.org/10.1074/jbc.275.14.9897
- Kuriyama, T., Tokinaga, Y., Tange, K., Kimoto, Y. and Ogawa, K. (2012) Propofol attenuates angiotensin II-induced vasoconstriction by inhibiting Ca2+-dependent and PKC-mediated Ca2+ sensitization mechanisms. J. Anesth. 26, 682-688. https://doi.org/10.1007/s00540-012-1415-5
- Liu, Z. and Khalil, R. A. (2018) Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem. Pharmacol. 153, 91-122. https://doi.org/10.1016/j.bcp.2018.02.012
- Qi, F., Ogawa, K., Tokinaga, Y., Uematsu, N., Minonishi, T. and Hatano, Y. (2009) Volatile anesthetics inhibit angiotensin II-induced vascular contraction by modulating myosin light chain phosphatase inhibiting protein, CPI-17 and regulatory subunit, MYPT1 phosphorylation. Anesth. Analg. 109, 412-417. https://doi.org/10.1213/ane.0b013e3181ac6d96
- Qiao, Y. N., He, W. Q., Chen, C. P., Zhang, C. H., Zhao, W., Wang, P., Zhang, L., Wu, Y. Z., Yang, X., Peng, Y. J., Gao, J. M., Kamm, K. E., Stull, J. T. and Zhu, M. S. (2014) Myosin phosphatase target subunit 1 (MYPT1) regulates the contraction and relaxation of vascular smooth muscle and maintains blood pressure. J. Biol. Chem. 289, 22512-22523. https://doi.org/10.1074/jbc.M113.525444
- Ren, K., Zhang, W., Wu, G., Ren, J., Lu, H., Li, Z. and Han, X. (2016) Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells. Biomed. Pharmacother. 84, 1748-1759. https://doi.org/10.1016/j.biopha.2016.10.111
- Sakurada, S., Takuwa, N., Sugimoto, N., Wang, Y., Seto, M., Sasaki, Y. and Takuwa, Y. (2003) Ca2+-dependent activation of Rho and Rho kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ. Res. 93, 548-556. https://doi.org/10.1161/01.RES.0000090998.08629.60
- Sasahara, T., Okamoto, H., Ohkura, N., Kobe, A. and Yayama, K. (2015) Epidermal growth factor induces Ca2+ sensitization through Rho-kinase-dependent phosphorylation of myosin phosphatase target subunit 1 in vascular smooth muscle. Eur. J. Pharmacol. 762, 89-95. https://doi.org/10.1016/j.ejphar.2015.05.042
- Somlyo, A. P. and Somlyo, A. V. (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325-1358. https://doi.org/10.1152/physrev.00023.2003
- Tsai, M. H. and Jiang, M. J. (2006) Rho-kinase-mediated regulation of receptor-agonist-stimulated smooth muscle contraction. Pflugers Arch. 453, 223-232. https://doi.org/10.1007/s00424-006-0133-y
- Wilson, D. P., Susnjar, M., Kiss, E., Sutherland, C. and Walsh, M. P. (2005) Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem. J. 389, 763-774. https://doi.org/10.1042/BJ20050237
- Wooldridge, A. A., MacDonald, J. A., Erdodi, F., Ma, C., Borman, M. A., Hartshorne, D. J. and Haystead, T. A. (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J. Biol. Chem. 279, 34496-34504. https://doi.org/10.1074/jbc.M405957200
- Yang, Q., Fujii, W., Kaji, N., Kakuta, S., Kada, K., Kuwahara, M., Tsubone, H., Ozaki, H. and Hori, M. (2018) The essential role of phospho-T38 CPI-17 in the maintenance of physiological blood pressure using genetically modified mice. FASEB J. 32, 2095-2109. https://doi.org/10.1096/fj.201700794r
- Zha, W. J., Qian, Y., Shen, Y., Du, Q., Chen, F. F., Wu, Z. Z., Li, X. and Huang, M. (2013) Galangin abrogates ovalbumin-induced airway inflammation via negative regulation of NF-κB. Evid. Based Complement. Alternat. Med. 2013, 767689.
- Zhang, H. T., Wu, J., Wen, M., Su, L. J. and Luo, H. (2012) Galangin induces apoptosis in hepatocellular carcinoma cells through the caspase 8/t-Bid mitochondrial pathway. J. Asian Nat. Prod. Res. 14, 626-633. https://doi.org/10.1080/10286020.2012.682152