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ON GENERALIZATION OF BI-PSEUDO-STARLIKE
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Abstract. We introduce certain subclasses of bi-univalent functions re-
lated to the strongly Janowski functions and discuss the Taylor-Maclaurin
coefficients |a2| and |a3| for the newly defined classes. Also, we deduce
certain new results and known results as special cases of our investigation.
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1. Introduction

An analytic function f in the open unit disk U = {z : |z| < 1} with

f(z) = z +

∞∑
n=2

anz
n, (1)

is said to be in the class A. We denote by S, S∗ and P the classes of functions
f ∈ A that are univalent, starlike and Carathodory functions, respectively, in U .

We say that f is subordinate to g, written f ≺ g or f(z) ≺ g(z), if there exists
a Schwartz function w in U such that f(z) = g(w(z)). In addition, if g ∈ S, then
f(z) ≺ g(z) if and only if f(0) = g(0) and f(U) ⊆ g(U). Using the concept of
subordination, Janowski [8] introduced the class P[A,B] of analytic functions p
such that p(z) ≺ (1 +Az) / (1 +Bz), for −1 ≤ B < A ≤ 1, z ∈ U .

Let p be analytic in U with p(0) = 1. Then p ∈ Pα[A,B], if and only if,

p(z) ≺
(
1 +Az

1 +Bz

)α
, α ∈ (0, 1] , − 1 ≤ B < A ≤ 1, z ∈ U .

where p1, p2 ∈ P [A,B]. Furthermore, let p ∈ Pm,α [A,B], if and only if,
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p(z) =

(
m

4
+

1

2

)
p1(z)−

(
m

4
− 1

2

)
p2(z),

where p1, p2 ∈ Pα[A,B] and m ≥ 2.
Particularly, for α = 1 the class Pm,α [A,B] coincides with the class Pm [A,B]

introduced in [14], whereas, for α = 1, A = 1 − 2β and B = −1, the class
Pm,α [A,B] reduces to the class Pm (β) of analytic univalent functions p, nor-
malized with p(0) = 1 and satisfying∫ 2π

0

∣∣∣∣ℜ(p(z))− β

1− β

∣∣∣∣ dθ ≤ mπ,

where m ≥ 2, β ∈ [0, 1) and z ∈ U , we refer to [15]. Moreover, for β = 0, we have
the class Pm (0) = Pm, introduced by Pinchuk [16]. Furthermore, for m = 2 we
have well known class P of Caratheodory functions. Also, we note that, when
m = 2, A = 1 and B = −1, then p ∈ P2,α [1,−1] implies |arg p(z)| ≤ απ

2 .
It is well known by Koebe one quarter theorem [7] that the image of U under

every function f ∈ S contains a disc of radius 1/4. Thus every univalent function
f has an inverse f−1 satisfying

f−1 (f(z)) = z, (z ∈ U)

and
f
(
f−1 (w)

)
= w, (|w| < r0 (f) , r0 (f) ≥ 1/4) .

The following is the series expansion of the inverse of f , (we say, g(w) = f−1(w)),
g(w) = f−1(w) = w − a2w

2 +
(
2a22 − a3

)
w3 −

(
5a32 − 5a2a3 + a4

)
w4 + ... (2)

A function f ∈ S is said to be bi-univalent in U if there exists a function g ∈ S
such that g(z) is an univalent extension of f−1 to U . We denote by

∑
the class

of bi-univalent in U . The functions z
1−z , − log (1− z) and 1

2 log
(

1+z
1−z

)
are in

the class
∑

; see [18]. However, the familiar Koebe function is not bi-univalent.
Various classes of bi-univalent functions were introduced and studied in recent
times, the study of bi-univalent functions gained momentum mainly due to the
work of Srivastava et al. [18]. Many researchers [1, 2, 3, 4, 5, 6, 9, 11, 12, 13]
recently investigated several interesting subclasses of the class

∑
and found

non-sharp estimates on the first two Taylor-Maclaurin coefficients.
Motivated by the work on bi-univalent functions in [11], we define a new

subclass
∑

Bγ,λ,α[A,B] (m,µ) and determine the bounds for initial Taylor-Maclaurin
coefficients of |a2| and |a3| for f ∈

∑
Bγ,λ,α[A,B] (m,µ).

Definition 1.1. A function f ∈
∑

is said to be in the class
∑

Bγ,λ,α[A,B] (m,µ) if
the following conditions are satisfied

1 +
1

γ

[
z (f ′ (z))

λ

(1− µ) z + µf (z)
− 1

]
∈ Pm,α [A,B] , (z ∈ U)
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and

1 +
1

γ

[
z (g′ (w))

λ

(1− µ)w + µg (w)
− 1

]
∈ Pm,α [A,B] , (w ∈ U) ,

where −1 ≤ B < A ≤ 1, m ≥ 2, λ ≥ 1, α ∈ (0, 1], µ ∈ [0, 1] and γ ∈ C\{0}, and
g (w) is given by (2).

Special cases:
(i) We note that, for γ = 1 we get a new class

∑
B1,λ,α
[A,B] (m,µ) =

∑
Bλ,α[A,B] (m,µ)

of functions f ∈
∑

satisfying the following two conditions

z (f ′ (z))
λ

(1− µ) z + µf (z)
∈ Pm,α [A,B] , (z ∈ U)

and
z (g′ (w))

λ

(1− µ)w + µg (w)
∈ Pm,α [A,B] , (w ∈ U) ,

where −1 ≤ B < A ≤ 1, m ≥ 2, λ ≥ 1, µ ∈ [0, 1] and α ∈ (0, 1], and g (w) is
given by (2).

(ii) For α = γ = 1, we obtain a new class
∑

B1,λ,1
[A,B] (m,µ) =

∑
Bλ[A,B] (m,µ)

of functions f ∈
∑

such that

z (f ′ (z))
λ

(1− µ) z + µf (z)
∈ Pm [A,B] , (z ∈ U)

and
z (g′ (w))

λ

(1− µ)w + µg (w)
∈ Pm [A,B] , (w ∈ U) ,

where −1 ≤ B < A ≤ 1, m ≥ 2, µ ∈ [0, 1] and λ ≥ 1, and g (w) is given by (2).
(iii) Form = 2 and γ = 1, we obtain a new class

∑
B1,λ,α
[A,B] (2, µ) =

∑
Bλ,α[A,B] (µ)

of functions f ∈
∑

such that

z (f ′ (z))
λ

(1− µ) z + µf (z)
∈ Pα [A,B] , (z ∈ U)

and
z (g′ (w))

λ

(1− µ)w + µg (w)
∈ Pα [A,B] , (w ∈ U) ,

where −1 ≤ B < A ≤ 1, α ∈ (0, 1], µ ∈ [0, 1] and λ ≥ 1, and g (w) is given by
(2).

(iv) For γ = α = 1, A = 1 − 2β and B = −1, we get the class
∑

Bλ (m,µ)
introduced in [11].

(v) For γ = α = µ = 1, m = 2, A = 1 − 2β and B = −1, we get the class∑
Bλ (β) introduced in [10].
(vi) For γ = µ = 1, m = 2, A = 1 and B = −1, we get the class

∑
Bλ (α)

introduced in [10].
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2. Main Results

The following lemmas are required to prove our investigations.

Lemma 2.1. [17] Let q(z) = 1+
∑∞
n=1 qnz

n be subordinate to Q(z) =
∑∞
n=1Qnz

n.
If Q(z) is univalent in U and Q(U) is convex, then

|qn| ≤ |Q1| , for n ≥ 1.

The following lemma can be easily proved by using Lemma 2.1 along with the
definition of Pα [A,B].

Lemma 2.2. Let p ∈ Pα [A,B] with p(z) = 1 +
∞∑
n=1

pnz
n. Then, for α ∈ (0, 1],

−1 ≤ A < B ≤ 1 and n ≥ 1,
|pn| ≤ α (A−B) , for n ≥ 1.

Lemma 2.3. Let m ≥ 2, α ∈ (0, 1], −1 ≤ A < B ≤ 1 and let p ∈ Pm,α [A,B]

with p(z) = 1 +
∞∑
n=1

pnz
n. Then

|pn| ≤
mα

2
(A−B) , for n ≥ 1.

Proof. This proof is straight forward by using Lemma 2.2 along with the defini-
tion of Pm,α [A,B]. �

Theorem 2.4. Let f ∈
∑

Bγ,λ,α[A,B] (m,µ) be given by (1). Then

|a2| ≤ min

{√
mα (A−B) |γ|

2 [2λ2 + λ (1− 2µ)− µ (1− µ)]
;
mα (A−B) |γ|

2 (2λ− µ)

}
and

|a3| ≤ min



mα(A−B)|γ|
2(3λ−µ) + mα(A−B)|γ|

2[2λ2+λ(1−2µ)−µ(1−µ)] ;

mα(A−B)|γ|
2(3λ−µ)

[
1 +

mα(A−B)|γ|{2λ2−2λ(µ+1)+µ2}
2(2λ−µ)2

]
;

mα(A−B)|γ|
2(3λ−µ)

[
1 +

mα(A−B)|γ|{2λ2+(2λ−µ)(2−µ)}
2(2λ−µ)2

]
 ,

with −1 ≤ B < A ≤ 1, m ≥ 2, λ ≥ 1, α ∈ (0, 1], µ ∈ [0, 1] and γ ∈ C\{0}.
Moreover,

|a3 − ϑa2| ≤
mα (A−B) |γ|

2 (3λ− µ)
,

where ϑ = 2λ2+(2λ−µ)(2−µ)
(3λ−µ) .

Proof. Let f ∈
∑

Bγ,λ[A,B] (m,ϕ) be given by (1). Then there exists two analytic
functions p, q ∈ Pm,α [A,B] with

p(z) = 1 + p1z + p2z
2 + ... (3)
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and
q(w) = 1 + q1w + q2w

2 + ... (4)
such that

1 +
1

γ

[
z (f ′ (z))

λ

(1− µ) z + µf (z)
− 1

]
= p(z) (5)

and

1 +
1

γ

[
z (g′ (w))

λ

(1− µ)w + µg (w)
− 1

]
= q(w), (6)

where g(w) is given by (2).
On the other hand

1 +
1

γ

[
z (f ′ (z))

λ

(1− µ) z + µf (z)
− 1

]
= 1 +

(2λ− µ)

γ
a2z

+
1

γ

[{
2λ2 − 2λ (µ+ 1) + µ2

}
a22 + (3λ− µ) a3

]
z2 + ... (7)

and

1 +
1

γ

[
z (g′ (w))

λ

(1− µ)w + µg (w)
− 1

]
= 1− (2λ− µ)

γ
a2w

+
1

γ

[{
2λ2 + (2λ− µ) (2− µ)

}
a22 − (3λ− µ) a3

]
w2 + .... (8)

From (3), (4), (7) and (8) comparing the coefficients of z, w, z2 and w2, we
obtain

(2λ− µ)

γ
a2 = p1 (9)

1

γ

[{
2λ2 − 2λ (µ+ 1) + µ2

}
a22 + (3λ− µ) a3

]
= p2 (10)

− (2λ− µ)

γ
a2 = q1 (11)

and
1

γ

[{
2λ2 + (2λ− µ) (2− µ)

}
a22 − (3λ− µ) a3

]
= q2. (12)

From (9) and (11), we can write

a2 =
γp1

(2λ− µ)
= − γq1

(2λ− µ)
. (13)

From Lemma 2.3, it follows that

|a2| ≤
mα (A−B) |γ|

2 (2λ− µ)
. (14)

Adding (10) and (12), we get{
4λ2 + 2λ (1− 2µ)− 2µ (1− µ)

}
a22 = γ (p2 + q2) ,
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by applying Lemma 2.3 and simple calculations yields

|a2| ≤

√
mα (A−B) |γ|

2 [2λ2 + λ (1− 2µ)− µ (1− µ)]
. (15)

Subtracting (10) from (12) to get

a3 =
γ (p2 − q2)

2 (3λ− µ)
+ a22.

Now, employing Lemma 2.3 and (14), we obtain

|a3| ≤
mα (A−B) |γ|

2 (3λ− µ)
+

mα (A−B) |γ|
2 [2λ2 + λ (1− 2µ)− µ (1− µ)]

. (16)

On making use of (9) and (10), we can easily find

|a3| ≤
mα (A−B) |γ|

2 (3λ− µ)

[
1 +

2mα (A−B) |γ|
{
2λ2 − 2λ (µ+ 1) + µ2

}
4 (2λ− µ)

2

]
. (17)

Again, by using (9) and (12), we finally obtain

|a3| ≤
mα (A−B) |γ|

2 (3λ− µ)

[
1 +

2mα (A−B) |γ|
{
2λ2 + (2λ− µ) (2− µ)

}
4 (2λ− µ)

2

]
. (18)

From (12), we can write
2λ2 + (2λ− µ) (2− µ)

(3λ− µ)
a22 − a3 =

γq2
(3λ− µ)

.

By employing Lemma 2.3, this implies

|a3 − ϑa2| =
∣∣∣∣ γq2
(3λ− µ)

∣∣∣∣ ≤ mα (A−B) |γ|
2 (3λ− µ)

, (19)

where ϑ = 2λ2+(2λ−µ)(2−µ)
(3λ−µ) . Hence, the inequalities (14) to (19) follows our

required proof. �

We note that for specializing the parameters, as mentioned in special cases
(i)-(iii) of Definition 1.1, we deduce the following new results.

Corollary 2.5. Let f ∈
∑

Bλ,α[A,B] (m,µ) be given by (1). Then

|a2| ≤ min

{√
mα (A−B)

2 [2λ2 + λ (1− 2µ)− µ (1− µ)]
;
mα (A−B)

2 (2λ− µ)

}
and

|a3| ≤ min



mα(A−B)
2(3λ−µ) + mα(A−B)

2[2λ2+λ(1−2µ)−µ(1−µ)] ;

mα(A−B)
2(3λ−µ)

[
1 +

mα(A−B){2λ2−2λ(µ+1)+µ2}
2(2λ−µ)2

]
;

mα(A−B)
2(3λ−µ)

[
1 +

mα(A−B){2λ2+(2λ−µ)(2−µ)}
2(2λ−µ)2

]
 ,
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with −1 ≤ B < A ≤ 1, m ≥ 2, λ ≥ 1, α ∈ (0, 1] and µ ∈ [0, 1]. Moreover,

|a3 − ϑa2| ≤
mα (A−B)

2 (3λ− µ)
,

where ϑ = 2λ2+(2λ−µ)(2−µ)
(3λ−µ) .

Corollary 2.6. Let f ∈
∑

Bλ[A,B] (m,µ) be given by (1). Then

|a2| ≤ min

{√
m (A−B)

2 [2λ2 + λ (1− 2µ)− µ (1− µ)]
;
m (A−B)

2 (2λ− µ)

}
and

|a3| ≤ min



m(A−B)
2(3λ−µ) + m(A−B)

2[2λ2+λ(1−2µ)−µ(1−µ)] ;

m(A−B)
2(3λ−µ)

[
1 +

m(A−B){2λ2−2λ(µ+1)+µ2}
2(2λ−µ)2

]
;

m(A−B)
2(3λ−µ)

[
1 +

m(A−B){2λ2+(2λ−µ)(2−µ)}
2(2λ−µ)2

]
 ,

with −1 ≤ B < A ≤ 1, m ≥ 2, λ ≥ 1 and µ ∈ [0, 1]. Moreover,

|a3 − ϑa2| ≤
m (A−B)

2 (3λ− µ)
,

where ϑ = 2λ2+(2λ−µ)(2−µ)
(3λ−µ) .

Corollary 2.7. Let f ∈
∑

Bλ,α[A,B] (µ) be given by (1). Then

|a2| ≤ min

{√
α (A−B)

[2λ2 + λ (1− 2µ)− µ (1− µ)]
;
α (A−B)

(2λ− µ)

}
and

|a3| ≤ min



α(A−B)
(3λ−µ) + α(A−B)

[2λ2+λ(1−2µ)−µ(1−µ)] ;

α(A−B)
(3λ−µ)

[
1 +

α(A−B){2λ2−2λ(µ+1)+µ2}
(2λ−µ)2

]
;

α(A−B)
(3λ−µ)

[
1 +

α(A−B){2λ2+(2λ−µ)(2−µ)}
(2λ−µ)2

]
 ,

with −1 ≤ B < A ≤ 1, λ ≥ 1, α ∈ (0, 1] and µ ∈ [0, 1]. Moreover,

|a3 − ϑa2| ≤
α (A−B)

(3λ− µ)
,

where ϑ = 2λ2+(2λ−µ)(2−µ)
(3λ−µ) .

Taking A = 1 − 2β and B = −1 in Corollary 2.6, we obtain the following
result proved in [11].
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Corollary 2.8. Let f ∈
∑

Bλ (m,µ) be given by (1). Then

|a2| ≤ min

{√
m (1− β)

[2λ2 + λ (1− 2µ)− µ (1− µ)]
;
m (1− β)

(2λ− µ)

}
and

|a3| ≤ min



m(1−β)
(3λ−µ) + m(1−β)

[2λ2+λ(1−2µ)−µ(1−µ)] ;

m(1−β)
(3λ−µ)

[
1 +

m(1−β){2λ2−2λ(µ+1)+µ2}
(2λ−µ)2

]
;

m(1−β)
(3λ−µ)

[
1 +

m(1−β){2λ2+(2λ−µ)(2−µ)}
(2λ−µ)2

]
 ,

with β ∈ [0, 1), m ≥ 2, λ ≥ 1 and µ ∈ [0, 1]. Moreover,

|a3 − ϑa2| ≤
m (1− β)

(3λ− µ)
,

where ϑ = 2λ2+(2λ−µ)(2−µ)
(3λ−µ) .

If we set µ = 1 and m = 2 in the previous corollary, we deduce the following.

Corollary 2.9. Let f ∈
∑

Bλ (β) be given by (1). Then

|a2| ≤ min

{√
2 (1− β)

λ (2λ− 1)
;
2 (1− β)

2λ− 1

}
and

|a3| ≤ min



2(1−β)
(3λ−1) +

2(1−β)
λ(2λ−1) ;

2(1−β)
(3λ−1)

[
1 +

2(1−β){2λ2−4λ+1}
(2λ−1)2

]
;

2(1−β)
(3λ−1)

[
1 +

2(1−β)(2λ2+2λ−1)
(2λ−1)2

]
 ,

with β ∈ [0, 1) and λ ≥ 1. Moreover,

|a3 − ϑa2| ≤
2 (1− β)

3λ− 1
,

where ϑ = 2λ2+(2λ−1)
(3λ−1) .

Taking m = 2, µ = 1, A = 1 and B = −1 in Corollary 2.5, we get the
following.

Corollary 2.10. Let f ∈
∑

Bλ (α) be given by (1). Then

|a2| ≤ min

{√
2α

λ (2λ− 1)
;

2α

2λ− 1

}
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and

|a3| ≤ min



2α
(3λ−1) +

2α
λ(2λ−1) ;

2α
(3λ−1)

[
1 +

2α{2λ2−4λ+1}
(2λ−1)2

]
;

2α
(3λ−1)

[
1 +

2α(2λ2+2λ−1)
(2λ−1)2

]
 ,

with λ ≥ 1 and α ∈ (0, 1]. Moreover,

|a3 − ϑa2| ≤
2α

3λ− 1
,

where ϑ = 2λ2+2λ−1
3λ−1 .

Remark 2.1. The estimates obtained in the Corollary 2.9 and Corollary 2.10
are the improvements of the estimates proved by the authors, as Theorem 1 and
Theorem 2, in [10].

3. Conclusion

The main aim of this paper is to estimate the Taylor-Maclaurin coefficients
|a2| and |a3| for the subclass of analytic functions associated with generalized
strongly Janowski functions. Several new and known results are derived from
our main investigations.
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