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Abstract. We investigated the invariant subspaces of the fractional inte-
gral operator in the Sobolev space Wk
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operator Jα by using the Duhamel product.
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1. Introduction and Background

In this manuscript, we consider unicellularity problem for the fractional inte-
gral operator

Jαf (x) =
1

Γ (x)

∫ x

0

(x− t)
α−1

f (t) dt, Reα > 0

which is the complex powers of the integration operator J1 =
∫ x
0
f (t) dt, where

f ∈ W k
p [0, 1] and W k

p [0, 1] = {f : f has absolutely continuous derivatives on
[0, 1] up to order k − 1 and have the derivative f (k) (x) ∈ Lp [0, 1] , p > 1}. If
k = 0 we set W 0

p [0, 1] = Lp [0, 1] . A linear bounded operator A which is defined
on W k

p [0, 1] is said to be unicellular if it lattice of invariant subspaces is totally
ordered with respect to the inclusion operation, i.e. if E1, E2 ∈ Lat A then
E1 ⊂ E2 or E2 ⊂ E1. Note that an integration operator J1 is an unicellular
operator on the Banach spaces (see Brodskii [3], Nikolskii [20]). In [21], it was
shown that J1 is unicellular on the space C(n) [0, 1] .

It is known that [7, 20] the fractional integral operator is unicellular on
Lp [0, 1] , p ∈ [1,∞) . In other words, the lattices of invariant and hyperinvariant
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subspaces of the operator Jα are of the form

Lat Jα = HypLat Jα =
{
Ea := X[0,1]Lp [0, 1] : 0 ≤ a ≤ 1

}
.

In [25] invariant subspaces were investigated for the integration operator Jk de-
fined on the Sobolev space W k

2 [0, 1]. Domonov and Malamud [5] have extended
these results for the fractional integral operator defined in the Sobolev spaces
W k
p [0, 1] . Also, various applications of fractional integral operator can be found

in [1, 12, 18, 27].
Some results related with non-trivial invariant subspaces and unicellularity

problem for the integration operator V =
∫ x
0
f (t) dt in various spaces have been

obtained with application of the Duhamel product in papers [4, 9, 10, 11, 13, 14,
15, 16, 22, 23, 24]. It arises the question of study of the invariant subspaces of the
operator Jα on the Sobolev spaces W k

p [0, 1] with application of the Duhamel
product. Answering this question in this paper we investigate unicellularity
problem for the fractional integral operator defined on the space W k

p [0, 1] and
describe the lattice LatJα of invariant subspaces.

Consider the fractional order operator

Jα : f →
∫ x

0

(x− t)
α−1

Γ (α)
f(t)dt, (1)

where Γ (.) is the Euler Gamma function and α ∈ C with Reα > 0. Here we
suppose f(x) ∈W k

p [0, 1] . The norm law on the space W k
p [0, 1] is defined as

∥f∥Wk
p
=

k−1∑
i=0

∣∣∣f (i) (0)∣∣∣+ ∥∥∥f (k)∥∥∥
Lp

Lemma 1.1. ([2]) Let n ∈ N0 The space W k
p [0, 1] consists of those and only

those functions f which are represented in the form

f(x) =
1

(n− 1)!

x∫
0

(x− t)
n−1

φ(t)dt+

n−1∑
k=0

ckx
k, (2)

where φ (t) ∈ Lp [0, 1] and ck (k = 0, 1, 2, ..., n− 1) are constants such thatφ (t) =

f (n) (t) , ck = f(k)(0)
k! .

Note that for Reα > 0 we have that the fractional integral operator Jα is a
bounded operator on the space Lp [0, 1] In this case we have

∥Jα∥Lp
≤ C ∥f∥Lp

(3)

where C = 1
|Γ(α)|Reα . From the above lemma we have immediately

∥Jαf∥
Wk

p

≤ C1 ∥f∥
Wk

p

, (4)

where C1 > 0 is a constant.
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2. Unicellularity of the fractional integration operator in the Sobolev
spaces

We consider the operator Jαk,0 := Jα acting on the space

W k
p,0[0, 1] =

{
f(x) ∈W k

p [0, 1] : f
(i) = 0, i = 0, 1, ..., k − 1

}
.

In this case f(x) = Jkf (k) (x) and f (k) ∈ Lp [0, 1] , where Jk is kth power of the
integration operator. Consequently, we have

Jαf(x) = Jα+kf (k) (x) = Jk(Jαf (k) (x)).

Further, if we denote

Uk =
dk
dxk

:W k
p [0, 1] → Lp [0, 1] ,

then Jαf(x) =
(
U−1
k Jα0 Uk

)
f(x) which implies that Jα = U−1Jα0 U. Moreover if

we define the norm in the space W k
p [0, 1] as

∥f∥Wk
p [0,1] =

k−1∑
k=0

∣∣∣f (i) (0)∣∣∣p + 1∫
0

∣∣∣f (k)(x)

∣∣∣p dx


1
p

then the operator Uk is an isometry by this norm. Indeed, if f ∈W k
p,0 [0, 1] then

∥Ukf∥LP
=

1∫
0

∣∣∣f (k) (t)∣∣∣p dt =
k−1∑
i=0

∣∣∣f (i) (0)∣∣∣p + 1∫
0

∣∣∣f (k) (t)∣∣∣p dt


1
p

= ∥f∥Wk
p [0,1] .

Now let Jαk,l is the operator Jα acting on the subspaces

Ekl =
{
f ∈W k

p [0, 1] : f (i) (0) = 0, i = 0, 1, ..., k − l − 1
}

if f (x) ∈ Ekl then

f(x) =
1

(k − l − 1)!

x∫
0

(x− t)
k−l−1

f (k−l) (t) dt,

where f (k−l) (x) ∈W l
p [0, 1] . By this we have for f ∈ Ekl :

Jαk,lf(x) = JαJk−lf (k−l) (x) = Jk−lJαDk−lf(x) = U−1
k−lJ

α
l Uk−lf(x).

Therefore
Jαk,l = U−1

k−lJ
α
l Uk−l,
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where Uk−l = Dk−l is the differentiation operator and it maps Ekl to W l
p [0, 1] .

Moreover, if f ∈ Ekl we have

∥Uk−lf∥W l
p[0,1]

=

 l−1∑
m=0

∣∣∣f (k−l+m) (0)
∣∣∣p + 1∫

0

∣∣∣f (k) (t)∣∣∣p dt


1
p

=

 k−1∑
j=k−l

∣∣∣f (j) (0)∣∣∣p + 1∫
0

∣∣∣f (k) (t)∣∣∣p dt


1
p

= ∥f∥Ek
l
.

Hence we have proved the following lemma :

Lemma 2.1. The operator Jαk,l acting on the subspace Ekl is isometrically equiv-
alent to the operator Jαl defined on W l

p [0, 1] (l = 0, 1, ..., k − 1).

From the Lemma 1.1 we have that following theorem.

Theorem 2.2. If Reα > 0 then the operator Jαk,0 acting on the space W k
p [0, 1]

is unicellular and
LatJαk,0 =

{
Eka : 0 ≤ a ≤ 1

}
where

Eka =
{
f ∈W k

p,0 [0, 1] : f(x) = 0 for x ∈ [0, a]
}
.

Consider the Duhamel product (see [26])

(f ~ g) (x) =
d

dx

x∫
0

f (x− t) g(t)dt =

x∫
0

f ′(x− t)g(t)dt+ f(0)g(x) (5)

where f, g ∈W k
p [0, 1] . It is easy to obtain

(f ~ g)
(m)

(x) =

x∫
0

f (m) (x− t) g′(t)dt+

m−1∑
i=0

f (i) (0) g(m−i) (x) + f (m) (x) g(0)

(6)
where m = 0, 1, ..., k. From Equation (6) we can write

(f ~ g)
(m)

(x) =

x∫
0

f ′ (t) g(m) (x− t) dt+

m−1∑
i=0

f (m−i) (x) g(i) (0) + f(0)g(m) (x) .

(7)
Now (6) and (7) imply

(f ~ g)
(m)

(x) =
1

2

x∫
0

f (m) (x− t) g′(t)dt+
1

2

x∫
0

f ′ (t) g(m) (x− t) dt

+
1

2

m−1∑
i=0

f (i) (0) g(m−i) (x) +
1

2

m−1∑
i=0

f (m−i) (x) g(i) (0)
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+
1

2
f (m) (x) g (0) +

1

2
f (0) g(m) (x) .

Consequently,

(f ~ g)
(m)

(0) =
1

2

m∑
i=0

f (i) (0) g(m−i) (0) +
1

2

m∑
i=0

f (m−i) (0) g(i) (0)

=

m∑
i=0

f (i) (0) g(m−i) (0) ,

and we can compute the following norm:

∥(f ~ g)∥pWk
p [0,1] (x)

=

m−1∑
k=0

∣∣∣(f ~ g)
(m)

(0)
∣∣∣p + 1∫

0

∣∣∣(f ~ g)
(k)

(x)
∣∣∣p dx

=

k−1∑
m=0

∣∣∣∣∣
m∑
i=0

f (i) (0) g(m−i) (0)

∣∣∣∣∣
p

+

1∫
0

∣∣∣∣∣∣12
x∫

0

f (k) (x− t) g′(t)dt+
1

2

x∫
0

f
′
(x) g(k) (x− t) dt +

1

2

k−1∑
i=0

f (i) (0) g(k−i) (x)

+
1

2

k−1∑
i=0

f (k−i) (x) g(i) (0) +
1

2
f
(k)
(x) g(0) +

1

2
f (0) g(k)(x)

∣∣∣∣∣
p

dx. (8)

Since
∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣
p

≤ np−1

n∑
i=0

|xi|p is satisfied for any collection of complex numbers

x1, x2, ..., xn from Eq. (8) we have the following estimations:

∥(f ~ g)∥Wk
p
(x) ≤

k−1∑
m=0

(m+ 1)
p−1

m∑
i=0

∣∣∣f (i) (0)∣∣∣p ∣∣∣g(m−i) (0)
∣∣∣p

+ (2k + n)
p−1

1∫
0

 i

2p

∣∣∣∣∣∣
x∫

0

f (n) (x− t) g′ (t) dt

∣∣∣∣∣∣
p

+
1

2p

∣∣∣∣∣∣
x∫

0

f ′ (t) g(k) (x− t) dt

∣∣∣∣∣∣
p

+
1

2p

k−1∑
i=0

∣∣∣f (i) (0)∣∣∣p ∣∣∣g(k−i) (x)∣∣∣p

+
1

2p

k−1∑
i=0

∣∣∣f (k−i) (x)∣∣∣p ∣∣∣g(i) (0)∣∣∣p
+

1

2p

∣∣∣f (k) (x) g (0)∣∣∣p + 1

2

∣∣∣f (0) g(k) (x)∣∣∣p] dx.
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Now using the generalized Minkowski inequality we have

∥(f ~ g)∥Wk
p
(x) ≤ kp−1

k−1∑
i=0

∣∣∣f (i) (0)∣∣∣p k−1∑
m=0

∣∣∣g(i) (0)∣∣∣p+
+

(2k + n)
p−1

2p

 1∫
0

|g′ (s)| ds

 1∫
0

∣∣∣f (k) (x)∣∣∣p dx
1/p


p

+
(2k + n)

p−1

2p

 1∫
0

∣∣∣f ′
(s)
∣∣∣ ds

 1∫
0

∣∣∣g(k) (x)∣∣∣p dx
1/p


p

+
(2k + n)

p−1

2p

k−1∑
i=0

∣∣∣f (i) (0)∣∣∣p 1∫
0

∣∣∣g(k−i) (x)∣∣∣p dx


+
(2k + n)

p−1

2p

k−1∑
i=0

∣∣∣g(i) (0)∣∣∣p 1∫
0

∣∣∣f (k−i) (x)∣∣∣p dx


+
(2k + n)

p−1

2p
|g(0)|p

1∫
0

∣∣∣f (k) (x)∣∣∣p dx+
+

(2k + n)
p−1

2p
|f(0)|p

1∫
0

∣∣∣g(k) (x)∣∣∣p dx. (9)

Since f(x) ∈W k
p [0, 1] then

f(x) =
1

(k − 1)!

x∫
0

(x− t)
k−1

f (k) (t) dt+

k−1∑
m=0

f (m) (0)

m!
xm, (10)

where f (k) (t) ∈ Lp [0, 1] . We can also write

f (k−i) (x) =
1

(i− 1)!

x∫
0

(x− t)
i−1

f (k) (t) dt+

i−1∑
m=0

f (m+k−i) (0)

m!
xm (11)

where i = 1, 2, ..., k.
By the Eq. (10) and (11) we find

1∫
0

∣∣∣f (k−i) (x)∣∣∣p dx =

1∫
0

∣∣∣∣∣∣ 1

(i− 1)!

x∫
0

(x− t)
i−1

f (k) (t) dt+

i−1∑
m=0

f (m+k−i) (0)

m!
xm

∣∣∣∣∣∣
p

dx
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≤ (i+ 1)
(p−1)

1∫
0

dx

∣∣∣∣∣∣
x∫

0

(x− t)
(i−1)

f (k) (t) dt

∣∣∣∣∣∣
p

+

i−1∑
m=0

∣∣∣f (m+k−i) (0)
∣∣∣p(xm

m!

)p]

≤ (i+ 1)
(p−1)

 1∫
0

dt

 1∫
x

∣∣∣ti−1f (k) (x)
∣∣∣p dx


1
p


p

+ (i+ 1)
(p+1)

i−1∑
m=0

∣∣∣f (m+k−i) (0)
∣∣∣p 1∫

0

xm
p

dx

(m!)
p

≤ (i+ 1)
(p−1)

 1∫
0

ti−1dt

 1∫
0

∣∣∣f (k) (t)∣∣∣p dt


1
p


p

+ (i+ 1)
p−1

i−1∑
m=0

(
f (m+k−i) (0)

)p 1

(m!)
p
(mp+ 1)

≤ (i+ 1)
(p−1)

ip

1∫
0

∣∣∣f (k) (t)∣∣∣p dt+ (i+ 1)
p−1

k−1∑
m=0

∣∣∣f (m) (0)
∣∣∣p ,

i.e.
1∫

0

∣∣∣f (k−i) (x)∣∣∣p dx ≤ (i+ 1)
(p−1)

ip

1∫
0

∣∣∣f (k) (x)∣∣∣p dx
+ (i+ 1)

(p−1)
k−1∑
m=0

∣∣∣f (m) (0)
∣∣∣p . (12)

Now we continue our estimations using (9) and (12) :

∥(f ~ g)∥pWk
p
≤ kp−1

k−1∑
i=0

∣∣∣f (i) (0)∣∣∣p k−1∑
m=0

∣∣∣g(i) (0)∣∣∣p

+
(2k + n)

p−1

2p

 1∫
0

|g′ (s)| ds

p 1∫
0

∣∣∣f (k) (x)∣∣∣p dx
+

(2k + n)
p−1

2p

 1∫
0

|f ′ (s)| ds

p 1∫
0

∣∣∣g(k) (x)∣∣∣p dx
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+
(2k + n)

p−1

2p

k−1∑
i=1

∣∣∣f (i) (0)∣∣∣p
 (i+ 1)

p−1

ip

1∫
0

∣∣∣g(k) (x)∣∣∣p dx
+(i+ 1)

p−1
k−1∑
m=0

∣∣∣g(m) (0)
∣∣∣p]+ (2k + n)

p−1

2p
|f (0)|p

1∫
0

∣∣∣g(k) (x)∣∣∣p dx

+
(2k + n)

p−1

2p

k−1∑
i=1

∣∣∣g(i) (0)∣∣∣p
 (i+ 1)

p−1

ip

1∫
0

∣∣∣f (k) (x)∣∣∣p dx
+(i+ 1)

p−1
k−1∑
m=0

∣∣∣f (m) (0)
∣∣∣p]+ (2k + n)

p−1

2p
|g (0)|p

1∫
0

∣∣∣f (k) (x)∣∣∣p dx
+

(2k + n)
p−1

2p
|g (0)|p

1∫
0

∣∣∣f (k) (x)∣∣∣p dx
+

(2k + n)
p−1

2p
|f (0)|p

1∫
0

∣∣∣g(k) (x)∣∣∣p dx
≤ L (k, p)

k−1∑
i=0

∣∣∣f (i) (0)∣∣∣p k−1∑
i=0

∣∣∣g(i) (0)∣∣∣p + 1∫
0

∣∣∣f (k) (x)∣∣∣p dx
 1∫

0

|g′ (s)| ds

p

+

1∫
0

∣∣∣g(k) (x)∣∣∣p dx
 1∫

0

|f ′ (s)| ds

p

+

1∫
0

∣∣∣g(k) (x)∣∣∣p dxk−1∑
i=0

∣∣∣f (i) (0)∣∣∣p + 1∫
0

∣∣∣f (k) (x)∣∣∣p dxk−1∑
i=0

∣∣∣g(i) (0)∣∣∣p
 . (13)

Here L(k, p) is a constant. Since

f ′ (x) =
1

(k − 2)!

x∫
0

(x− t)
k−2

f (k) (t) dt+

k−1∑
m=1

f (m) (0)

(m− 1)!
xm−1,

we have 1∫
0

∣∣∣f ′
(x)
∣∣∣p dx

p

≤
1∫

0

∣∣∣f ′
(x)
∣∣∣p dx

≤ kp−1

(k − 1)
p

1∫
0

∣∣∣f (k) (t)∣∣∣p dt+ kp−1
k−1∑
m=0

∣∣∣f (m) (0)
∣∣∣p . (14)
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Now from the last two inequalities we find that

∥(f ~ g)∥Wk
p [0,1] (x) ≤ L (k, p) ∥f∥Wk

p [0,1] ∥g∥Wk
p [0,1] . (15)

The inequality
∥(f ~ g) (x)∥Wk

p [0,1] = L ∥f∥Wk
p
∥g∥Wk

p

shows that the operator

Dfg := f ~ g, g ∈W k
p [0, 1]

is continuous in the space W k
p [0, 1] . We also obtain that

Jαf(x) =
1

Γ (α+ 1)

d

dx

x∫
0

(x− t)
α
f (t) dt =

xα

Γ (α+ 1)
??f (x)

for f(x) ∈W k
p [0, 1] .

Now we will prove the following Lemma.

Lemma 2.3. Let f ∈W k
p [0, 1] . Then f is ~−invertible in W k

p [0, 1] if and only
if f (0) ̸= 0.

Proof. If f is ~−invertible then (f ~ g) (0) = f (0) g (0) = 1 which implies
f (0) ̸= 0. Let f (0) ̸= 0. Prove that f is ~−invertible in the space W k

p [0, 1] .
The operator Df can be rewritten as

Df = f (0) I +Df.,f(0)

where I is an identity operator on W k
p [0, 1] . Let h(x) = f (x)− f (0) . Then

Df = f (0) I +Dh

we have h (0) = 0 and consequently

(Dhg) (x) =
d

dx

x∫
0

h (x− t) g (t) dt =

x∫
0

h′ (x− t) g (t) dt. (16)

It is easy to show that operator Dh is a bounded operator onW k
p [0, 1] . By using

the inequality (15) we also obtain that Dh is a compact operator on W k
p [0, 1] .

On other hand if g (x) ∈ ker {f (0) I +Dh} then (f ~ g) (x) = 0. Therefore by
the Titchmarch’s convolution theorem [19] we have ker {Df} = {0} . Thus, by
the well-known Fredholm alternative [6] Df is an invertible on W k

p [0, 1] . �

Lemma 2.4. Let g ∈ E
(k)
l , l = 0, 1, ..., k− 1. If g (x) ̸= 0 in any right neighbor-

hood of zero, then
span {(Jα)m g : m ≥ 0} = E

(k)
l .
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Proof. We know that if g (x) ∈ E
(k)
l then

g (x) =
1

(k − l − 1)!

x∫
0

(x− t)
x−l−g(k−l)

(t) dt,

where g(k−l) (x) ∈W l
p [0, 1] . Therefore we have

(Jα)
m
g (x) =

1

Γ (k − l + αm + 1)
xk−l+αm ~ g(k−l) (x)

= Dg(k−l)
xk−l+αm

Γ (k − l + αm + 1)
.

Consequently we obtain

span {(Jα)m g : m ≥ 0} = Dg(k−l)span

{
xk−l+αm

Γ (k − l + αm + 1)

}
= Dg(k−l)span

{
xk−l+m

m!
: m ≥ 0

}
= E

(k)
l .

�

The following two lemmas can be proved by the similar arguments (see [24]).

Lemma 2.5. If Reα > 1 − p then f ∈ Cyc (Jα/Eλ) in W l
p [0, 1] if and only if

f ∈ Eλ\Eµ for every µ > λ.

Lemma 2.6. If Reα > k− 1
p (k ≥ 2) or α ∈ Z+\ {0} then f ∈ Cyc (Jα/Eλ) in

W k
p [0, 1] if and only if α = 1 and f ∈ Eλ\Eµ for every λ < µ.

From the Lemmas 1.1, 2.1, 2.3 and 2.4, we have the following theorems.

Theorem 2.7. The operator Jα1 = Jα is unicellular in W 1
p [0, 1] if Reα > 1− 1

p

and LatJα1 =
{
E1
a : 0 ≤ a ≤ 1

}
∪W 1

p [0, 1] .

Theorem 2.8. If k ≥ 2 and Reα > k − 1
p or α = m ∈ Z, m ̸= 0 then Jαk is

unicellular in W k
p [0, 1] if and only if α = 1.

3. Conclusion

In this paper we investigate the invariant subspaces of the fractional integral
operator in the Sobolev space W k

p [0, 1] and unicellularity of the operator Jα by
using the Duhamel product and describe the lattice LatJα of invariant subspaces.
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